
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS
CRYPTANALYSIS OF THE SODARK FAMILY OF CIPHER

ALGORITHMS

by

Marcus Dansarie

September 2017

Thesis Advisor:
Second Reader:

David Canright
Raymond R. Buettner Jr.

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
September 2017

3. REPORT TYPE AND DATES COVERED
Master’s Thesis 09-26-2016 to 09-22-2017

4. TITLE AND SUBTITLE

CRYPTANALYSIS OF THE SODARK FAMILY OF CIPHER ALGORITHMS
5. FUNDING NUMBERS

6. AUTHOR(S)

Marcus Dansarie

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The thesis studies the security of the SoDark family of cipher algorithms through cryptanalysis. The ciphers in question are used to
protect messages sent by second- and third-generation automatic link establishment (ALE) systems for high frequency radios. Radios
utilizing ALE technology are in use by a multitude of government and non-government organizations worldwide. Structural attacks on
up to eight rounds based on differential properties are presented and implemented in practice. An efficient logic circuit representation
of the only nonlinear component of the ciphers, the S-box, is generated. That representation, converted to conjunctive normal
form (CNF), is used to perform key-recovery attacks on up to four rounds with the use of Boolean satisfiability problem (SAT)
solvers. The logic circuit representation is further used to develop an efficient bitslicing CUDA implementation of the cipher. Its
efficiency in attacking the cipher is demonstrated. The impact of the attacks on the ALE system is considered. Finally, the thesis
includes suggestions regarding a replacement cipher and ideas for further cryptanalysis.

14. SUBJECT TERMS

cryptanalysis, automatic link establishment, ALE, high frequency radio, HF radio, block ciphers, SoDark,
electronic warfare, algebraic attacks

15. NUMBER OF
PAGES 115

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

CRYPTANALYSIS OF THE SODARK FAMILY OF CIPHER ALGORITHMS

Marcus Dansarie
Sub-lieutenant, Swedish Armed Forces
B.S., Swedish Defence University, 2009

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION WARFARE SYSTEMS
ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2017

Approved by: David Canright
Thesis Advisor

Raymond R. Buettner Jr.
Second Reader

Dan C. Boger
Chair, Department of Information Sciences

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The thesis studies the security of the SoDark family of cipher algorithms through
cryptanalysis. The ciphers in question are used to protect messages sent by second- and
third-generation automatic link establishment (ALE) systems for high frequency radios.
Radios utilizing ALE technology are in use by a multitude of government and non-
government organizations worldwide. Structural attacks on up to eight rounds based on
di˙erential properties are presented and implemented in practice. An eÿcient logic circuit
representation of the only nonlinear component of the ciphers, the S-box, is generated.
That representation, converted to conjunctive normal form (CNF), is used to perform key-
recovery attacks on up to four rounds with the use of Boolean satisfiability problem (SAT)
solvers. The logic circuit representation is further used to develop an eÿcient bitslicing
CUDA implementation of the cipher. Its eÿciency in attacking the cipher is demonstrated.
The impact of the attacks on the ALE system is considered. Finally, the thesis includes
suggestions regarding a replacement cipher and ideas for further cryptanalysis.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Purpose and Motivation. 1
1.3 Methodology . 2
1.4 Thesis Outline . 2

2 Background 5
2.1 Information Security . 5
2.2 Block Ciphers . 5
2.3 Automatic Link Establishment Systems 8
2.4 Cryptanalysis . 11

3 The SoDark Family of Algorithms 19
3.1 Background . 19
3.2 Notation . 21
3.3 24-bit Version (SoDark-3) . 22
3.4 48-bit Version (SoDark-6) . 25
3.5 S-box Properties and Probable Generation and Selection Criteria 28
3.6 Equivalence to the Even–Mansour Construction 33
3.7 Properties with Respect to Linear Cryptanalysis 34

4 Structural Attacks 37
4.1 Measures of Complexity . 37
4.2 Attacks on Iterated Even–Mansour Constructions 38
4.3 Known-Plaintext Attack on Two-Round SoDark-3 39
4.4 Known-Plaintext Attack on Three-Round SoDark-3 45
4.5 Known-Plaintext Attack on Four-Round SoDark-3 51
4.6 Known-Plaintext Attack on Five-Round SoDark-3 57

vii

4.7 Chosen-Tweak Attack on Six- and Seven-Round SoDark-3. 59
4.8 Chosen-Tweak Attack on Eight-Round SoDark-3 64
4.9 Experimental Verification . 66

5 Logic Circuit Representations of the SoDark S-box 67
5.1 Introduction . 67
5.2 Kwan’s Algorithm . 68
5.3 Improvements to Kwan’s Algorithm 69
5.4 Software Implementation . 72
5.5 Generated Circuits . 72

6 SAT-Based Attacks 75

7 Brute Force Attacks 79
7.1 Introduction . 79
7.2 The CUDA Framework . 79
7.3 Brute Force Bitslicing Implementation 80
7.4 Attack in Practice . 81
7.5 Ciphertext-Only Attack . 81

8 Conclusion 83
8.1 Summary of Attacks . 83
8.2 Discussion . 84
8.3 Recommendations . 86
8.4 A Suggested Replacement for SoDark 87
8.5 Ideas for Further Research. 88

List of References 91

Initial Distribution List 97

viii

List of Figures

Figure 2.1 A generic block cipher . 6

Figure 2.2 Example HF propagation diagram 8

Figure 3.1 The first two rounds of the SoDark-3 algorithm 23

Figure 3.2 The first two rounds of the SoDark-6 algorithm 26

Figure 3.3 Graphic representation of the SoDark S-box LAT 30

Figure 3.4 Graphic representation of the SoDark S-box DDT 30

Figure 3.5 Graphic representation of the SoDark S-box DDT modulo 4 . . . 31

Figure 3.6 Linear approximation distribution 32

Figure 3.7 Linear approximation distribution, logarithmic scale 32

Figure 3.8 An r-round iterated Even–Mansour construction 33

Figure 4.1 Attack on two-round SoDark-3 41

Figure 4.2 Attack on three-round SoDark-3 46

Figure 4.3 Attack on four-round SoDark-3 52

Figure 4.4 Attack on five-round SoDark-3 57

Figure 4.5 Attacks on six- and seven-round SoDark-3 60

Figure 4.6 Trade-off curve between data and probability of success 62

Figure 4.7 The last two rounds in the attack on eight-round SoDark-3 65

Figure 5.1 Logic circuit representation of a Boolean function 73

Figure 5.2 LUT circuit representation of a Boolean function 74

ix

Figure 6.1 Performance of SAT solver attacks 78

Figure 8.1 One round of the Thorp shuffle 88

x

List of Tables

Table 2.1 ALE linking protection application levels 10

Table 2.2 Construction of tweak used in ALE linking protection 11

Table 2.3 Key length recommendations . 13

Table 2.4 An example 4 × 4 S-box vulnerable to differential cryptanalysis . . 17

Table 2.5 Excerpt from the difference distribution table of the example S-box 17

Table 2.6 An example 4 × 4 S-box vulnerable to linear cryptanalysis 18

Table 3.1 The Lattice and SoDark S-box 20

Table 3.2 Lattice and SoDark-3 key schedule 24

Table 3.3 SoDark-6 key schedule . 27

Table 3.4 Linearizations of the 24-bit SoDark S-box 35

Table 3.5 Best known linearizations for the 24-bit SoDark algorithm S-box 35

Table 6.1 Tseytin transformations for some logic gates 76

Table 6.2 CNF representation statistics . 77

Table 7.1 All 218 keys that satisfy the first two Lattice test vectors 82

Table 8.1 Summary of attacks on SoDark-3 83

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

2DES Double DES

3DES Triple DES

2G second-generation

3G third-generation

4G fourth-generation

AES Advanced Encryption Standard

AL application level

ALE automatic link establishment

ANF algebraic normal form

ASCII American Standard Code for Information Interchange

ASIC application-specific integrated circuit

BCD binary-coded decimal

CNF conjunctive normal form

CPU central processing unit

CRC cyclic redundancy check

DDT difference distribution table

DES Digital Encryption Standard

DIMACS Center for Discrete Mathematics and Theoretical Computer Science

EFF Electronic Frontier Foundation

xiii

EM Even–Mansour

FOT frequency of optimum transmission

FPGA field-programmable gate array

GPGPU general-purpose computing on graphics processing units

GPU graphics processing unit

GSM Global System for Mobile Communications

HF high frequency

LAT linear approximation table

LUF lowest usable frequency

LUT lookup table

MHz megahertz

MUF maximum usable frequency

MITM meet-in-the-middle

MQ multivariate quadratic

NP non-deterministic polynomial-time

NPS Naval Postgraduate School

NSA National Security Agency

OpenCL Open Computing Language

PDU protocol data unit

PI protection interval

PTX Parallel Thread Execution

SAT Boolean satisfiability problem

xiv

SIMD single instruction, multiple data

TMTO time–memory trade-off

UTC Coordinated Universal Time

VOACAP Voice of America Coverage Analysis Program

XOR exclusive or

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Introduction

1.1 Introduction
In radio communications, the frequencies between 3 megahertz (MHz) and 30 MHz are
commonly referred to as the high frequency (HF) band. The main advantage of using this
frequency band for communication is that it allows global coverage without any infrastruc-
ture. This is due to those frequencies’ ability to reflect off the ionosphere. Therefore, a
notable characteristic of the HF band is that propagation conditions change continuously
with changes in the ionosphere. The properties of the ionosphere are heavily dependent
on a number of factors, including time of day and year, geographic location, and the sun’s
11-year cycle. When establishing a link, i.e., calling another radio station in order to transfer
information, all these factors and more must be taken into account when selecting transmis-
sion parameters such as frequency and power [1]. To achieve reliable communications on
the HF radio bands, skilled and experienced operators are therefore normally needed.

In the past few decades, advances in automatic link establishment (ALE) technology have
allowed relatively unskilled operators to operate HF radios and establish communication
links with success rates and times close to those of skilled and experienced operators. The
addition of automation to any system inevitably introduces both new security issues as well
as new variants of previous issues. The second-generation (2G) and third-generation (3G)
ALE standards address this by including an option for encrypting the link establishment
messages that are sent over the air [1].

1.2 Purpose and Motivation
The purpose of this thesis is to study the security of the SoDark family of ciphers that are
used to encrypt link establishment messages in the 2G and 3G ALE standards. The security
provided by the ciphers directly affects the performance of ALE systems in the presence of
adversarial electronic warfare measures, which makes knowledge of their security bounds
important.

1

The SoDark algorithms have been developed specifically for the ALE application [1]. No
public cryptanalysis of the algorithms is available, so their security is, in effect, unknown.
Both 2G and 3GALE systems are in active useworldwide by users ranging from government
and military, to non-governmental organizations and amateur radio operators [2]. If cryp-
tographic weaknesses exist in the ciphers protecting these users’ ALE HF communications,
knowledge of those weaknesses might help the users compensate for those weaknesses and,
eventually, eliminate them.

1.3 Methodology
The bounds of security of ciphers are established through cryptanalysis, described in Chap-
ter 2. For academic purposes, any weakness in a cryptographic system is enough for it to
be considered broken. This includes attacks that are infeasible in practice or only possible
under very special circumstances. A cipher is considered broken in practice if an attack that
affects the security provided by the cipher can be performed in some real-life setting [3].

As such, the method employed in academic cryptanalysis is that of hypothesis testing. The
null hypothesis, then, is that the cipher is secure and that the most efficient way to attack it
is through an exhaustive key search (see Chapter 2). An attack on the cipher that requires
less effort than this constitutes a falsification of the null hypothesis.

1.4 Thesis Outline
Chapter 2 provides a brief theoretical background on a number of concepts in cryptography
and information security that are central to the material covered in the rest of the thesis.
The chapter also includes a brief overview of ALE technology.

Chapter 3 contains a description of the SoDark family of ciphers, mainly based on the
specifications in [1], [4], and [5]. It also introduces the mathematical notation used in
the cryptanalysis of the ciphers. The chapter also investigates the properties and selection
criteria of the SoDark S-box and generalizes the cipher’s structure to the Even–Mansour
(EM) construction. A brief investigation of the cipher’s properties with regard to linear
cryptanalysis is also performed.

2

Chapter 4 contains the main contributions of the thesis: differential-based structural key
recovery attacks on up to eight rounds of the 24-bit SoDark-3 algorithm.

Chapter 5 describes the process of generating efficient logic circuit representations of the
SoDark S-box. The logic circuit representations are used in the attacks presented in
Chapters 6 and 7.

Chapter 6 describes the conversion of the logic circuit representations from Chapter 5 into
conjunctive normal form (CNF) and the use of Boolean satisfiability problem (SAT) solvers
for key recovery attacks on up to four rounds of SoDark-3.

Chapter 7 describes the development of a high-performance bitslicing CUDA implemen-
tation for brute force key recovery attacks on the full cipher. Conversion of the developed
known-plaintext attack into a ciphertext-only attack is described.

Chapter 8 concludes the thesis with a summary of the main results. It investigates the con-
sequences of the results on the ALE system and provides recommendations. A replacement
cipher, based on best practices, is suggested. The chapter finishes with a brief description
of possible areas of study for further cryptanalysis of the SoDark cipher family.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

CHAPTER 2:
Background

2.1 Information Security
Information security is a termused for the practices concerning the protection of information,
regardless of its physical form. The notion of protection is primarily expressed in three
core concepts: confidentiality, integrity, and availability. Other concepts such as non-
repudiation, accountability, reliability, or variants thereof are sometimes included as further
core concepts. Here, however, focus is on the three primary concepts, which are defined as

– Confidentiality is the protection of the information content itself so that only those
authorized are able to access and use it.

– Integrity is the protection of information against unauthorized change as well as the
ability to detect unauthorized changes that have been made.

– Availability is the protection of the ability to access the information so that it is
available for authorized users to read or modify. As such, the protection is against
physical loss of the information itself as well as against loss of the ability to access or
transfer it.

Methods for achieving the three aforementioned conditions vary depending on the conse-
quences of failure to protect information aswell as the information’s physical form. They can
include legislation, physical obstacles, backups, spare systems, training, and authentication
mechanisms as well as mathematical and computer algorithms such as cryptosystems [6].

2.2 Block Ciphers
Block ciphers are prevalent as fundamental building blocks of other algorithms or protocols
that aim to provide confidentiality, integrity, or availability in digital systems. In that regard,
they are known as cryptographic primitives. Their basic purpose is to provide a means of
transforming messages between plaintext space and ciphertext space using a secret key.
To do this, a block cipher specifies an encryption function E and a decryption function
D = E−1 that take the key and message as parameters. In other words: C = EK(P) and

5

P = DK(C). Note, that for this to work, EK must be bijective so that its inverse DK

exists and DK(EK(P)) = P ∀K, P. The relationship between E , D, P, C, and K is shown
schematically in Figure 2.1.

K

P E C

K

D P

Figure 2.1. A generic block cipher with encryption function E and decryption
function D.

In digital block cipher systems, the sets of plaintexts and ciphertexts consist of all binary
strings of a certain length n: P,C ∈ {0, 1}n. This length is known as the block size. The
key is also a binary string of fixed length: K ∈ {0, 1}k , but there is no requirement for the
key size k to be the same as the block size n. Nevertheless, this is the case for some ciphers
such as the Advanced Encryption Standard (AES), when it is used with a 128-bit key [7].

A block cipher provides security by making it computationally infeasible to discover the
plaintexts of any number of given ciphertexts, or discover the key used to generate them.
The inverse, calculating the ciphertexts of any number of given plaintexts, should also be
infeasible. This is perhaps the most important requirement for any cipher—that the security
must rely only on the key. In other words, knowledge of the cipher algorithm or any number
of plaintexts or ciphertexts should not allow an attacker to gain any more information
about the key or unknown plaintexts or unknown ciphertexts. This principle is known as
Kerckhoffs’ principle [8] and is a fundamental requirement in all modern cryptography.

The properties that ciphers must have in order to be secure are described in Shannon’s
seminal paper [9]. In particular, he introduces the two principles of diffusion and confusion
that are used to prevent statistical analysis. Diffusion means that any properties of parts
of the plaintext should be spread out over as much of the ciphertext as possible. In block
ciphers, this means that the avalanche effect is a desirable property. That is, the change
in a single bit of the plaintext should cause the probability of change for any given bit
of ciphertext to be 1

2 [7]. While demonstration of the avalanche effect shows a cipher
has diffusion, it is not enough to prove any level of security. For this, confusion is also

6

necessary, which is in essence the same statement for the key—no simple statistical relation
between the key and ciphertext should exist. Both diffusion and confusion are necessary
for a cipher to be secure. A cipher without one or the other is likely to be vulnerable to
statistical attacks.

The fact that the security of a block cipher should only be dependent on the key makes the
size of the key space important. If the key space is too small, an adversary that has access to
a small number of ciphertexts and their corresponding plaintexts can simply perform trial
decryption with all possible keys until the correct one is found. Note that, by the pigeonhole
principle, if the key size is larger than the block size, then, for any plaintext, there exists at
least one ciphertext that is generated by more than one key and vice versa.

As mentioned previously, block ciphers are usually not used to directly encrypt messages
in block-sized chunks. Instead, they are used as cryptographic primitives in block cipher
modes of operation. These modes prevent certain security issues associated with using
block ciphers directly, enable encryption of variable-length messages, and provide other
desirable properties such as authentication [7]. Whilemodes of operation are very important
in the larger context of the use of block ciphers, they have no bearing in the context of the
usage of the ciphers studied in this thesis.

Some block ciphers have a third input to the encryption function, in addition to the key
and plaintext, called a tweak. The first widely known cipher algorithm to use a tweak was
probably the Hasty Pudding AES candidate [10]. A tweak provides additional keying bits
that, unlike the key, are not necessarily secret [11]. The tweak is normally stored or sent
along with the plaintext. The purpose of a tweak is to improve the security of the cipher
with the additional non-secret bits. Ideally, no two plaintexts should be encrypted with the
same combination of key and tweak. The cipher must still be secure even if that is the
case, as the tweak input may not be used at all in some applications. Worse, it could be
controlled by an adversary. Like the other inputs to a block cipher, the output should exhibit
the avalanche property with respect to the tweak.

7

2.3 Automatic Link Establishment Systems
As mentioned in Section 1.1, the performance of HF radio systems is highly dependent
on ionospheric conditions. The most important factors affecting the properties of the
ionosphere with respect to HF radio are: time of day and year, geographic location, and the
sun’s 11-year cycle. Additionally, equipment parameters such as output power, antennas,
and selected modulation also affect propagation. Figure 2.2 shows a HF radio propagation
diagram generated with the Voice of America Coverage Analysis Program (VOACAP) [12].
The diagram shows maximum usable frequency (MUF), lowest usable frequency (LUF),
and frequency of optimum transmission (FOT) for communication between two geographic
locations during different times of day. It should be apparent that propagation conditions
change over time.

0

5

10

15

20

25

00 02 04 06 08 10 12 14 16 18 20 22

Fr
eq
ue
nc
y
[M

H
z]

UTC hour

MUF
FOT
LUF

Figure 2.2. Example HF propagation diagram showing maximum usable
frequency (MUF), lowest usable frequency (LUF), and frequency of optimum
transmission (FOT) between Grimeton, Sweden, and Long Island, New York,
during September 2017. Produced using VOACAP.

Understanding and utilizing the ionospheric conditions correctly as an HF radio operator
requires training and experience. ALE technologies were created to offset most of this need

8

with technology. In an ALE system, a computer selects transmission parameters such as
frequency and power using amodel of the ionosphere fed with a large number of parameters.
In addition, some ALE systems perform regular soundings where one or more stations in an
ALE radio network transmit sounding signals that are used by receiving stations to measure
current propagation conditions on different frequencies, thereby improving the model’s
predictive accuracy [1].

The first ALE systems were proprietary developments by a number of commercial vendors.
Interoperability suffered as a consequence. In response to this, 2G ALE was developed and
standardized in MIL-STD-188-141 [4] and FS-1045 [13]. This enabled interoperability
between radios from different manufacturers as well as between organizations [1].

Radios in ALE systems exchange messages in the form of protocol data units (PDU). All
2G ALE PDUs are exactly 24-bits long and consist of a three-bit preamble and three seven-
bit ASCII characters. A typical call from one 2G ALE radio to another with a request to
establish a communications link will consist of three PDUs. The first two are identical and
contain the intended receiver’s address while the third contains the sender’s address. For
example, the first and second would contain the preamble <TO> (010 in binary) followed
by a three ASCII character address, such as SAM. This example would be hex encoded as
54e0cd. The third PDU in this example could contain the preamble <TIS> (101 in binary)
followed by the sender address JOE and be hex encoded as b2a7c5 [5].

An obvious requirement for two radios to be able to communicate is that the sender transmits
on the same frequency as the one on which the receiver is listening. To adopt to varying
transmission conditions, ALE radio networks must use several different frequencies. This
is achieved by having all idle radios in a network scan a predefined list of frequencies by
sequentially tuning to them for a short period of time, called the dwell time, and listening
for ALE PDUs. A radio that needs to establish a link with another radio selects a suitable
frequency using the ionospheric transmission model and starts transmitting PDUs on that
frequency. Because the radios scan frequencies asynchronously, some number of tries will
be needed for the intended receiver to register the transmission. When a radio detects a
PDU intended for it, it stops scanning and transmits a reply.

The asynchronous scanning is a source of some inefficiency. The next generation of
the standard, 3G ALE, solved this problem utilizing synchronous scanning, i.e., all radio

9

stations in the network tune to the same frequency at the same time. Since a transmitting
radio knows which frequency an intended receiver is tuned to at any instant, only a single
transmission will normally be required. A requirement for this to work is for all stations’
internal clocks to be synchronized with an accuracy less than the dwell time. This can
be done by manual input, with the help of external timing input from a global navigation
satellite system receiver, or through asynchronous over-the-air synchronization with another
ALE station.

3GALE uses 26- and 48-bit PDUs that have different formats from 2GALE. The addressing
format is different as well, with 3G ALE using binary addresses. Additionally, 3G ALE
PDUs contain cyclic redundancy check (CRC) checksums, allowing for error detection.

To prevent unauthorized users from linking with radios in an ALE radio network, or
to recover information from intercepted PDUs, the standards specify an optional linking
protection scheme that allows for encryption of transmitted PDUs. ALE linking protection
has five application levels (AL): AL-0 through AL-4. Their definitions from [4] are shown
in Table 2.1.

Table 2.1. ALE linking protection application levels. Adapted from [4].
Application level Definition
AL-0 unprotected application level
AL-1 unclassified application level
AL-2 unclassified enhanced application level
AL-3 unclassified but sensitive application level
AL-4 classified application level

The first application level, AL-0, corresponds to all encryption being turned off. Application
levels AL-1 and AL-2 use the SoDark cipher algorithms and are described as “for general
U.S. Government and commercial use.” The difference between AL-1 and AL-2 is that
the latter uses a shorter protection interval (PI): two seconds instead of 60 seconds. The
tweak (see Section 2.2 and Chapter 3) used for encryption of PDUs remains the same for
the duration of a PI. This makes AL-1 somewhat vulnerable to replay attacks.

10

AL-3 and AL-4 use hardware cipher modules developed and approved by the National
Security Agency (NSA). AL-4 is the only AL intended for the protection of classified
information. These application levels are outside the scope of this thesis.

The tweak, which is referred to as seed in the standards, is a 64-bit value used to prevent
replay attacks. Chapter 3 describes how the tweak is used by the linking protection cipher
in the ALE protocols. It contains the transmission frequency, PI number (i.e., transmission
time), date, and the word number (i.e., the order of the PDU in the current transmission).
The advantage of using that data is that it is implicitly known by the receiver and does not
need to be transferred along with the ciphertext. Table 2.2 shows the tweak data structure.

Table 2.2. Construction of tweak used in ALE linking protection. Bit number
1 is the most significant bit and 64 the least significant. Adapted from [4].

Field Month Day PI Word number Zero pad Frequency (BCD)
Bits 1 – 4 5 – 9 10 – 26 27 – 34 35 – 36 37 – 64

2.4 Cryptanalysis
Cryptanalysis is, as the name implies, the analysis of cryptosystems. In particular, crypt-
analysis normally aims to establish the bounds of a cryptosystem’s security. It is practiced
by both users of cryptosystems and their adversaries. Cryptosystem users perform crypt-
analysis to ensure there are no ways to recover information about plaintexts, ciphertexts, or
keys. Their adversaries do cryptanalysis in the hope of finding such ways [7].

In general, any ability to recover information that requires less effort than trying, on average,
half of the possible keys is considered a break for cryptanalytic purposes. For example,
there exists a key recovery attack for AES with computational complexity proportional to
2126.1, while the average computational complexity of a brute force attack is 2127. AES is
therefore broken in theory. Since the complexity of this attack is still astronomical, however,
and requires a very large amount of data, the cipher is not broken in practice and is still
considered safe to use [14].

The starting point for cryptanalysis on a particular cipher is usually to study its mathematical
description and to apply cryptanalytic techniques that have been successfulwith other similar
ciphers. A common approach is to start by analyzing versions of the cipher with reduced

11

security. This can, for example, be a version that has a reduced number of rounds or in an
improbable setting, such as having the entire codebook for a given key. The insights from
these attacks may then provide tools and methods for attacking the cipher with more rounds
or in more generalized settings [3].

Perhaps the single most important property for a cipher to have if it is to be resistant to
cryptanalysis is nonlinearity. This property follows directly from Shannon’s diffusion and
confusion properties. A completely linear cipher can simply be described as a system of
linear equations that can be solved by Gaussian elimination given a very small number
of plaintexts. Since systems of linear equations can be solved in polynomial time, this is
expected to be faster than an exhaustive search of the key space, even for very small key
spaces.

A nonlinear cipher on the other hand, must be described as a system of equations of higher
order. Such a system of equations is reducible to the multivariate quadratic (MQ) problem,
which is non-deterministic polynomial-time (NP)-hard. Thus, it has complexity O(2αn),
0 < α ≤ 1 in the case of n binary variables. In most cases, this makes it harder to attack a
cipher this way than the brute force approach of testing all the keys, which has complexity
equivalent to 2k−1 encryptions on average, where k is the key length in bits.

There are exceptions: In some cases, it is possible to linearize the system of equations, i.e.,
to replace all nonlinear terms with new variables and then solve the resulting system of
linear equations. This will yield a number of spurious solutions that must be filtered out.
Linearization of a MQ system of equations is only possible if it is sufficiently sparse and
overdefined. Another exception is the use of SAT solvers or constraint solvers to solve the
system of equations. SAT solvers are able to solve large systems of Boolean equations with
comparatively high speed [15].

While many attacks are specific to certain ciphers, there are a number of attacks that work
on large classes of block ciphers. Some examples of such generic attacks are given in the
following sections.

12

2.4.1 Brute Force Attacks
A brute force attack works by trying every possible key until the right one is found. On
average, half the key space needs to be searched before the correct key is found so, for a
k-bit key, the effort is proportional to 2k−1. The only protection against brute force key
search is to ensure that the key space is large enough for the attack to be intractable, at least
during the expected period for which the encrypted data needs to be protected. In general,
a cipher is considered secure if no attacks exist that are faster than an exhaustive search
in practice and the size of the key space makes a brute force search impossible. Various
recommendations for minimum key lengths exist. Table 2.3 compiles the recommendations
from [16] and [17]. Among the sources consulted, there is consensus that a 128-bit key size
provides good security, 64 bits or less provides no security in practice, and 80 bits is the
smallest key size that provides any measure of security.

Table 2.3. Key length recommendations. Adapted from [16], [17].
Level of security

Key size (bits) Knudsen & Robshaw (2010) ECRYPT II (2012)
32 attacks in real-time by individuals
40 easy to break very short-term protection
64 practical to break
80 not currently feasible smallest general-purpose level
96 legacy standard level
112 medium-term protection
128 very strong long-term protection
256 exceptionally strong foreseeable future

An efficient brute force attack requires an efficient implementation of the cipher function.
Application-specific integrated circuits (ASIC) built specifically for breaking the cipher in
question is the fastest, but most expensive, technology. Constructing an ASIC to perform
brute force key search requires custom integrated circuit design andmanufacturing, which is
expensive and out of reach for individuals and small organizations. In 1998, the Electronic
Frontier Foundation (EFF) built an ASIC-based computer, Deep Crack, that could break
the 56-bit Digital Encryption Standard (DES) cipher in less than a week. The budget for
the project was about 200,000 U.S. dollars [18]. This is an example of a medium-size
organization’s ability to break 56-bit ciphers in the late 1990s.

13

A slower and cheaper, but still quite efficient, way to perform a brute force search is
to employ field-programmable gate arrays (FPGA). FPGAs are reconfigurable hardware
gate networks that enable efficient implementations and parallelization of calculations at
comparatively low cost. Cloud FPGA computing services as well as FPGA expansion cards
for personal computers are available. This could enable the use of FPGAs for brute force
key searches by individuals and organizations of any size.

Graphics processing units (GPU) are primarily designed for real-time rendering of graph-
ics on personal computers. Yet, their design also makes them useful for highly parallel
computation—a single modern GPU can contain thousands of processor cores. This has
led to the emergence of general-purpose computing on graphics processing units (GPGPU)
programming frameworks, such as OpenCL and CUDA, specifically tailored for GPU com-
puting. These frameworks are used to write programs that solve various hard problems
encountered in a wide range of fields.

Lastly, brute force key search can be done with central processing units (CPU) in general
purpose computers. Except for ciphers that have been specifically engineered to resist the
aforementioned methods, this tends to be the slowest method. To their advantage, however,
are shorter development time and the possibility of using existing software implementations
of the cipher. In addition, an organization can use the computer infrastructure it already has
in place to perform the key search. There are also examples of the Internet being used to
leverage the power of computers all over the world to perform brute force key search.

Regardless of the hardware used, the fastest implementations of ciphers are in forms that
regard the cipher as a network of logic gates rather than as an imperative computer program.
In ASICs and FPGAs, this enables a design that, in effect, tests one key per clock cycle. In
GPUs and CPUs, this enables bitslicing implementations. In a bitslicing implementation,
each variable in the program represents one bit of state and the entire cipher is implemented
in software as bitwise logic operations. This enables instruction level parallelism, where
every instruction operates on a number of parallel encryptions or decryptions. The exact
number is dependent on the platform’s register size. With modern processors that have
single instruction, multiple data (SIMD) instruction sets with registers as wide as 256 or
512 bits, this means that that many encryptions or decryptions can be performed in parallel

14

on a single processor core. Additionally, bit level permutations are performed at no cost at
all in bitslicing implementations [19].

Finding the most efficient logic gate representation of nonlinear parts of the cipher, such as
S-boxes, is an NP-hard problem. Without a clear mathematical description of an S-box, a
partial search of the solution space using a heuristic algorithm may be the only way to find
an efficient, but non-optimal, solution.

2.4.2 Time–Memory Trade-Off Attacks
Time–memory trade-off (TMTO) attacks exist for all block ciphers. The simplest example
is to construct a dictionary that associates any given plaintext–ciphertext pair with a key.
For most ciphers that are in practical use, the storage space required to mount such an attack
makes this impossible. For a cipher with a block and key size of n bits, the storage space
required for the lookup table would be n · 22n bits. The required space can be reduced to
n · 2n bits if the dictionary is restricted to a single plaintext.

Hellman [20] describes a TMTO attack that allows the attacker to choose an almost arbitrary
point on a trade-off curve between the extremes provided by the brute force and dictionary
attacks. A TMTO attack starts by creating reusable tables for a certain plaintext by per-
forming precomputations of a complexity equivalent to the brute force recovery of a single
key. Given a ciphertext corresponding to that plaintext, the key can be recovered by quickly
regenerating only parts of the precomputations with the help of the tables. This way, the
key can be recovered significantly faster than by brute force alone. TMTO attacks have
been used to perform practical breaks of ciphers that are in current use. One of the more
notable examples of a cipher broken by this is the A5/1 cipher used in the GSM standard for
mobile telephony [21]. For details on the attack, the reader is referred to Hellman’s original
paper [20] or to the description in [16].

2.4.3 Meet-in-the-Middle Attacks
Meet-in-the-middle (MITM) attacks are an example of a type of structural attack. They
exploit the fact that some ciphers can be divided into two parts, where neither part is
dependent on the full key. This attack type was first described in [22], where possible
improvements to the DES algorithm are investigated. When considering double encryption

15

with DES using two different keys, the authors show that such a system can be broken
with effort proportional to 257, despite the system having a 112-bit key. Thus, the double
encryption with two independent keys adds only a single bit of security. As an example,
Algorithm 2.1 performs a MITM attack on a product cipher f = h ◦ g using two known
plaintext–ciphertext pairs.

Algorithm 2.1 Perform a meet-in-the-middle attack on a product cipher f = h◦g. Adapted
from [22].
1: procedure MeetInTheMiddle(P1,C1, P2,C2)
2: L ← empty list
3: for all k1 do
4: v ← gk1(P1)
5: L.append(v, k1)
6: end for
7: for all k2 do
8: w ← h−1

k2
(C1)

9: k1 ← L[w]
10: if hk2

(
gk1(P2)

)
= C2 then

11: Print(k1, k2)
12: end if
13: end for
14: end procedure

In the case of Double DES (2DES), we expect to find the key in about 257 DES operations
using 256 56-bit blocks of memory. For that reason, DES was eventually strengthened
through Triple DES (3DES), which is still vulnerable to the same attack, but with an attack
complexity of about 2112 DES operations. This was considered sufficiently prohibitive at
the time.

2.4.4 Differential Cryptanalysis
Differential cryptanalysis is, together with linear cryptanalysis, one of the strongest known
general attacks on block ciphers. It was first described in the open literature by Biham
and Shamir [23]. Attacks based on differential cryptanalysis work with differences, called
differentials, between inputs and outputs of parts of a cipher. Commonly, the differentials
are defined as the bitwise XOR of two values, although other definitions such as modular
addition can be used.

16

The basic idea of differential attacks is to distinguish the output of a certain function from
random by considering the probability that a certain output differential is generated by a
certain input differential or vice versa. Since S-boxes are the only source of nonlinearity
in many ciphers, the study of their differential properties is usually an important part of
cryptanalysis. An example 4×4 S-box from [16] is shown in Table 2.4 and Table 2.5 shows
the parts of its difference distribution table (DDT) that correspond to inputs that are bitwise
complements. It is clear that the differentials shown in the rightmost column are not evenly
distributed. The value d, for example, appears with probability 10

16 and 12 of the 16 possible
values have probability 0.

Table 2.4. An example 4 × 4 S-box vulnerable to differential cryptanalysis.
Adapted from [16].

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S (x) 6 4 c 5 0 7 2 e 1 f 3 d 8 a 9 b

Table 2.5. Excerpt from the difference distribution table of the example
S-box from Table 2.4. Adapted from [16].

i j S (i) S (j) S (i) ⊕ S (j)
0 f 6 b d
1 e 4 9 d
2 d c a 6
3 c 5 8 d
4 b 0 d d
5 a 7 3 4
6 9 2 f d
7 8 e 1 f
8 7 1 e f
9 6 f 2 d
a 5 3 7 4
b 4 d 0 d
c 3 8 5 d
d 2 a c 6
e 1 9 4 d
f 0 b 6 d

17

The DDTs of the S-boxes in a cipher, together with knowledge of its round structure,
can be used to construct relations between inputs and outputs of a number of consecutive
rounds that have probabilities much higher or lower than expected for a cipher adhering to
Shannon’s diffusion property.

2.4.5 Linear Cryptanalysis
Linear cryptanalysis was first described by Matsui in his cryptanalysis of the DES cipher
[24]. As with differential cryptanalysis, it provides a method for discovering and using
non-random statistical properties of the cipher. This time, the property used is the parity of
certain bit positions in the input and output.

Again, an example 4×4 S-box from [16], shown in Table 2.6, illustrates the concept. The top
two rows in the table show the S-box, while the additional two bottom rows show the parity
of certain bits of its input and output, respectively, selected by the masks α = (1, 0, 0, 1) and
β = (0, 0, 1, 0). The two bottom rows differ in all columns, except for x = 1 and x = f. This
means that the relation (α · x) ⊕ 1 = β · S(x) holds with probability 14

16 , which is a significant
difference from the 8

16 =
1
2 probability expected from a S-box with good nonlinearity.

Table 2.6. An example 4×4 S-box vulnerable to linear cryptanalysis. Adapted
from [16].

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S (x) f e b c 6 d 7 8 0 3 9 a 4 2 1 5

α · x 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
β · S (x) 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0

The equivalent to a DDT in linear cryptanalysis is the linear approximation table (LAT),
which shows the deviation from the expected probability of 1

2 for all pairs of input and
output masks. As with differential cryptanalysis, the LAT in linear cryptanalysis is used
to create relations between the parity of inputs and outputs of several consecutive cipher
rounds. The relations can then be used in attacking the cipher.

For a more in-depth description of the methods of linear and differential cryptanalysis, the
reader is referred to the excellent tutorials in [16] and [25].

18

CHAPTER 3:
The SoDark Family of Algorithms

3.1 Background
The Lattice cipher algorithm is specified in [4]. It is a 24-bit block cipher that uses a 56-bit
key and a 64-bit tweak. It has eight rounds and is used to encrypt 24-bit PDUs sent by the
2G ALE protocol. A version called SoDark-3 is used in the 3G ALE standard to encrypt
24-bits of the 26-bit PDUs. It is identical to the original Lattice algorithm, except that it
uses 16 rounds. Since 3G ALE also uses 48-bit PDUs, SoDark-3 has been extended into a
version with 48-bit block size called SoDark-6.

The cipher was developed specifically for the ALE application. The main purpose of the
algorithm, according to [5], is to prevent unauthorized linking with radios that are part of
an ALE radio network. The reference specifically mentions both replay attacks, where a
previously sent legitimate PDU is replayed by an adversary, as well as attacks where the
adversary is actively trying to recover the key.

Further insight is given by [1], which lists the following seven design requirements for the
original Lattice algorithm:

(a) transparency to ALE protocols;
(b) self-synchronization;
(c) minimum impact on scanning dwell time;
(d) 24-bit block operation;
(e) channel- and time-varying;
(f) moderate computational requirements; and
(g) unclassified algorithm.

Requirements a, b, c, and d all have the same root cause in that the 2G ALE standard uses
24-bit PDUs and non-synchronous frequency scanning. A station in an HF radio network
that uses ALE must be able to switch to a frequency and immediately start receiving PDUs.
Since the dwell time, i.e., the time the station listens to any given frequency, is quite

19

short, any received non-authentic PDU must not cause an interruption in scanning. The
linking protection cipher is also an optional feature in the standard and must be a drop-in
replacement in the sense that nomore data than the 24 or 48 bits allocated in the transmission
format can be used when linking protection is enabled.

Requirement e is needed if the cipher is to be semantically secure. Without this, it would be
trivially vulnerable to traffic analysis and replay attacks. In particular, the short block size
would enable an attacker to quickly compile relevant parts of the codebook for a given key.

The last two requirements, f and g, stem from the fact that the ALE algorithm and cipher
are meant to be used by field radios.

The round function consists of S-box lookups and XOR operations, which makes the S-
box the only nonlinear component of the cipher. Table 3.1 shows the S-box lookup table.
Neither [1] nor [4] nor [5] describes how the S-box was generated or the criteria for its
selection.

Table 3.1. The Lattice and SoDark S-box. Adapted from [4].
?0 ?1 ?2 ?3 ?4 ?5 ?6 ?7 ?8 ?9 ?A ?B ?C ?D ?E ?F

0? 9C F2 14 C1 8E CB B2 65 97 7A 60 17 92 F9 78 41
1? 07 4C 67 6D 66 4A 30 7D 53 9D B5 BC C3 CA F1 04
2? 03 EC D0 38 B0 ED AD C4 DD 56 42 BD A0 DE 1B 81
3? 55 44 5A E4 50 DC 43 63 09 5C 74 CF 0E AB 1D 3D
4? 6B 02 5D 28 E7 C6 EE B4 D9 7C 19 3E 5E 6C D6 6E
5? 2A 13 A5 08 B9 2D BB A2 D4 96 39 E0 BA D7 82 33
6? 0D 5F 26 16 FE 22 AF 00 11 C8 9E 88 8B A1 7B 87
7? 27 E6 C7 94 D1 5B 9B F0 9F DB E1 8D D2 1F 6A 90
8? F4 18 91 59 01 B1 FC 34 3C 37 47 29 E2 64 69 24
9? 0A 2F 73 71 A9 84 8C A8 A3 3B E3 E9 58 80 A7 D3
A? B7 C2 1C 95 1E 4D 4F 4E FB 76 FD 99 C5 C9 E8 2E
B? 8A DF F5 49 F3 6F 8F E5 EB F6 25 D5 31 C0 57 72
C? AA 46 68 0B 93 89 83 70 EF A4 85 F8 0F B3 AC 10
D? 62 CC 61 40 F7 FA 52 7F FF 32 45 20 79 CE EA BE
E? CD 15 21 23 D8 B6 0C 3F 54 1A BF 98 48 3A 75 77
F? 2B AE 36 DA 7E 86 35 51 05 12 B8 A6 9A 2C 06 4B

20

3.2 Notation
This section introduces the notation used in the descriptions and cryptanalysis of theSoDark
family of ciphers in this and following chapters.

The bitwise exclusive or (XOR) operation is denoted by ⊕.

S-box lookups are denoted by s and inverse S-box lookups by s−1.

Concatenation of variables is denoted by ‖.

The full plaintext is denoted by P, the full ciphertext by C, the full key by K, and the full
tweak by T .

The ciphers described are byte oriented. Input and output bytes to and from each round
are denoted by the letters A through F, with the letter A representing the most significant
byte of the state and the other letters representing the following bytes in falling order. To
differentiate between state in different rounds, the superscript in parenthesis is used where
A(r−1) represents the input to and A(r) the output from the rth round.

In the cryptanalysis, the state of several parallel encryptions are studied and subscripts are
used to differentiate the parallel variables. For example, A(0)1 and A(0)2 represent the most
significant input byte in two parallel encryptions.

Differentials, i.e., XOR differences between the same state variable in two parallel encryp-
tions are denoted with the ∆ character. Continuing the previous example, ∆A(0) would be
the differential of the most significant plaintext byte.

In some cases it will be convenient to study partial decryptions of the parts of a round that
are not key-dependent. The notation Â(1)1 is used for such partial decryptions.

Use of the key and tweak is also byte oriented. A certain byte is denoted by k1 for the key and
t1 for the tweak, starting with the number one for the most significant byte. Multiple-byte
round keys are denoted by K . Different versions of tweak bytes in parallel encryptions are
denoted by a comma in the subscript. For example, t1,2 denotes the most significant tweak
byte in the second parallel encryption.

21

3.3 24-bit Version (SoDark-3)
Each round operates on the incoming 24-bit word by splitting it into three bytes A(r−1),
B(r−1), and C(r−1), with A(r−1) containing the most significant bits and C(r−1) the least
significant. It then calculates three output bytes A(r), B(r), and C(r) in the following manner:

A(r) = s
(
A(r−1) ⊕ B(r−1) ⊕ k1

)
(3.1)

C(r) = s
(
C(r−1) ⊕ B(r−1) ⊕ k2

)
(3.2)

B(r) = s
(
B(r−1) ⊕ A(r) ⊕ C(r) ⊕ k3

)
(3.3)

where s denotes the S-box lookup function and k1, k2, and k3 are the most, middle, and least
significant parts of the round key. Figure 3.1 shows the encryption process. Decryption is
performed by inverting the operations:

B(r−1) = s−1
(
B(r)

)
⊕ A(r) ⊕ C(r) ⊕ k3 (3.4)

A(r−1) = s−1
(
A(r)

)
⊕ B(r−1) ⊕ k1 (3.5)

C(r−1) = s−1
(
C(r)

)
⊕ B(r−1) ⊕ k2. (3.6)

The key schedule is completely linear. For each round, three bytes of key and three bytes of
tweak are XORed to create a 24-bit round key. The bytes are used in order and the different
lengths of the key and tweak ensure that the round keys are different.

The round keys for the first 16 rounds are listed in Table 3.2. As is apparent from the table,
and assuming the tweak is known, knowledge of any round key will reveal parts of at least
half of the round keys.

22

A(0) B(0) C(0)

⊕ ⊕
S S

k1 ⊕ t1 k2 ⊕ t2

⊕
S

k3 ⊕ t3

⊕ ⊕
S S

k4 ⊕ t4 k5 ⊕ t5

⊕
S

k6 ⊕ t6

A(2)

B(2)

C(2)

Figure 3.1. The first two rounds of the SoDark-3 algorithm.

23

Table 3.2. Lattice and SoDark-3 key schedule.
Round Kr

k1 k2 k3
1 k1 ⊕ t1 k2 ⊕ t2 k3 ⊕ t3
2 k4 ⊕ t4 k5 ⊕ t5 k6 ⊕ t6
3 k7 ⊕ t7 k1 ⊕ t8 k2 ⊕ t1
4 k3 ⊕ t2 k4 ⊕ t3 k5 ⊕ t4
5 k6 ⊕ t5 k7 ⊕ t6 k1 ⊕ t7
6 k2 ⊕ t8 k3 ⊕ t1 k4 ⊕ t2
7 k5 ⊕ t3 k6 ⊕ t4 k7 ⊕ t5
8 k1 ⊕ t6 k2 ⊕ t7 k3 ⊕ t8
9 k4 ⊕ t1 k5 ⊕ t2 k6 ⊕ t3
10 k7 ⊕ t4 k1 ⊕ t5 k2 ⊕ t6
11 k3 ⊕ t7 k4 ⊕ t8 k5 ⊕ t1
12 k6 ⊕ t2 k7 ⊕ t3 k1 ⊕ t4
13 k2 ⊕ t5 k3 ⊕ t6 k4 ⊕ t7
14 k5 ⊕ t8 k6 ⊕ t1 k7 ⊕ t2
15 k1 ⊕ t3 k2 ⊕ t4 k3 ⊕ t5
16 k4 ⊕ t6 k5 ⊕ t7 k6 ⊕ t8

24

3.4 48-bit Version (SoDark-6)
The version of the algorithm with 48-bit block length, SoDark-6, is a direct extension of
SoDark-3. Figure 3.2 shows the encryption process: Each round splits the incoming 48-bit
word into six bytes A(r−1), B(r−1), C(r−1), D(r−1), E (r−1), and F(r−1) with A(r−1) containing
the most significant bits and F(r−1) the least significant. It then calculates six output bytes
in the following manner:

A(r) = s
(
A(r−1) ⊕ B(r−1) ⊕ F(r−1) ⊕ k1

)
(3.7)

C(r) = s
(
B(r−1) ⊕ C(r−1) ⊕ D(r−1) ⊕ k2

)
(3.8)

E (r) = s
(
D(r−1) ⊕ E (r−1) ⊕ F(r−1) ⊕ k3

)
(3.9)

B(r) = s
(
A(r) ⊕ B(r−1) ⊕ C(r) ⊕ k4

)
(3.10)

D(r) = s
(
C(r) ⊕ D(r−1) ⊕ E (r) ⊕ k5

)
(3.11)

F(r) = s
(
E (r) ⊕ F(r−1) ⊕ A(r) ⊕ k6

)
. (3.12)

Again, ki denotes the ith byte of the round key where k1 is the most significant. The key
schedule is analogous to the one used by the 24-bit versions and is shown in Table 3.3.
Decryption is also analogous to the 24-bit version:

B(r−1) = s−1
(
B(r)

)
⊕ A(r) ⊕ C(r) ⊕ k4 (3.13)

D(r−1) = s−1
(
D(r)

)
⊕ C(r) ⊕ E (r) ⊕ k5 (3.14)

F(r−1) = s−1
(
F(r)

)
⊕ E (r) ⊕ A(r) ⊕ k6 (3.15)

A(r−1) = s−1
(
A(r)

)
⊕ B(r−1) ⊕ F(r−1) ⊕ k1 (3.16)

C(r−1) = s−1
(
C(r)

)
⊕ B(r−1) ⊕ D(r−1) ⊕ k2 (3.17)

E (r−1) = s−1
(
E (r)

)
⊕ D(r−1) ⊕ F(r−1) ⊕ k3. (3.18)

One notable change from SoDark-3 is that the mixing of inputs “wraps around” in the
sense that the most and least significant bytes A and F are mixed with each other.

25

A(0) B(0) C(0) D(0) E (0) F(0)

⊕ ⊕ ⊕
S S S

k1 ⊕ t1 k2 ⊕ t2 k3 ⊕ t3

⊕ ⊕ ⊕
S S S

k4 ⊕ t4 k5 ⊕ t5 k6 ⊕ t6

⊕ ⊕ ⊕
k7 ⊕ t7 k1 ⊕ t8 k2 ⊕ t1

S S S

⊕ ⊕ ⊕
k3 ⊕ t2 k4 ⊕ t3 k5 ⊕ t4

S S S

A(2)

B(2)

C(2)

D(2)

E (2)

F(2)

Figure 3.2. The first two rounds of the SoDark-6 algorithm.

26

Table 3.3. SoDark-6 key schedule.
Round Kr

k1 k2 k3 k4 k5 k6
1 k1 ⊕ t1 k2 ⊕ t2 k3 ⊕ t3 k4 ⊕ t4 k5 ⊕ t5 k6 ⊕ t6
2 k7 ⊕ t7 k1 ⊕ t8 k2 ⊕ t1 k3 ⊕ t2 k4 ⊕ t3 k5 ⊕ t4
3 k6 ⊕ t5 k7 ⊕ t6 k1 ⊕ t7 k2 ⊕ t8 k3 ⊕ t1 k4 ⊕ t2
4 k5 ⊕ t3 k6 ⊕ t4 k7 ⊕ t5 k1 ⊕ t6 k2 ⊕ t7 k3 ⊕ t8
5 k4 ⊕ t1 k5 ⊕ t2 k6 ⊕ t3 k7 ⊕ t4 k1 ⊕ t5 k2 ⊕ t6
6 k3 ⊕ t7 k4 ⊕ t8 k5 ⊕ t1 k6 ⊕ t2 k7 ⊕ t3 k1 ⊕ t4
7 k2 ⊕ t5 k3 ⊕ t6 k4 ⊕ t7 k5 ⊕ t8 k6 ⊕ t1 k7 ⊕ t2
8 k1 ⊕ t3 k2 ⊕ t4 k3 ⊕ t5 k4 ⊕ t6 k5 ⊕ t7 k6 ⊕ t8
9 k7 ⊕ t1 k1 ⊕ t2 k2 ⊕ t3 k3 ⊕ t4 k4 ⊕ t5 k5 ⊕ t6
10 k6 ⊕ t7 k7 ⊕ t8 k1 ⊕ t1 k2 ⊕ t2 k3 ⊕ t3 k4 ⊕ t4
11 k5 ⊕ t5 k6 ⊕ t6 k7 ⊕ t7 k1 ⊕ t8 k2 ⊕ t1 k3 ⊕ t2
12 k4 ⊕ t3 k5 ⊕ t4 k6 ⊕ t5 k7 ⊕ t6 k1 ⊕ t7 k2 ⊕ t8
13 k3 ⊕ t1 k4 ⊕ t2 k5 ⊕ t3 k6 ⊕ t4 k7 ⊕ t5 k1 ⊕ t6
14 k2 ⊕ t7 k3 ⊕ t8 k4 ⊕ t1 k5 ⊕ t2 k6 ⊕ t3 k7 ⊕ t4
15 k1 ⊕ t5 k2 ⊕ t6 k3 ⊕ t7 k4 ⊕ t8 k5 ⊕ t1 k6 ⊕ t2
16 k7 ⊕ t3 k1 ⊕ t4 k2 ⊕ t5 k3 ⊕ t6 k4 ⊕ t7 k5 ⊕ t8

27

3.5 S-box Properties and Probable Generation and Selec-
tion Criteria

The facts that none of the available descriptions of the algorithm mention anything about
the S-box selection criteria and that the S-box is the only nonlinear part of the cipher
make its properties important to study. This has been done using the techniques described
in [26]. Following the proposed strategy in that article, the S-box was first studied using
what the authors call the “Pollock” technique. The name alludes to the 20th century
abstract expressionist painter and simply consists of plotting the S-box’s LAT and DDT,
studying them to find non-random patterns. The visualizations of the LAT and DDT are
shown in Figures 3.3 and 3.4, respectively. Inspection of them does not reveal any obvious
non-random patterns.

In [27], the study of the visual representation of the LAT modulo 4 is suggested. It notes
that the presence of patterns there can indicate that the S-box was generated by a Feistel
network with a low number of rounds. The LATmodulo 4 of the SoDark S-box is shown in
Figure 3.5. It does indeed show unmistakable patterns. For that reason, the possibility that
the S-boxwas generated by a Feistel networkwas investigated using the techniques described
in [26]. Algorithm 2 from that article, DecomposeFeistel, was implemented to generate
a CNF representation of a Feistel network that can generate the S-box. This representation
was then used as input to the SAT solvers CryptoMiniSat [28] and Treengeling [29],
which found the problem unsatisfiable. This ruled out the possibility that the S-box was
generated by a Feistel network with bijective round functions and five or fewer rounds. The
authors of [27] have noted in an associated presentation, that randomly generated S-boxes
can have patterns in the LAT modulo 4 that look similar to those in S-boxes generated by
Feistel networks with more than five rounds.

With the hypothesis that the S-box was generated by a low round Feistel network falsified,
the possibility that the S-box was a randomly selected permutation was investigated. In [26],
the probability distribution of the coefficients in the LAT of a random permutation is given
as

P
[
ci, j = 2z

]
=

(2n−1

2n−2+z

)2(2n
2n−1

) (3.19)

where P
[
ci, j = 2z

]
is the probability that a particular combination of input and output bits

28

will have the bias 2z and n is the S-box width in bits. This probability distribution is
plotted together with the distribution of the SoDark S-box LAT in Figures 3.6 and 3.7.
The predicted and actual distributions track each other very closely and a χ2 test was made
to establish the goodness of fit. With χ2 = 91.3 and 38 degrees of freedom, this yields a
p-value less than 0.00001, which indicates a very high likelihood that the SoDark S-box
was chosen randomly. The only selection criteria was probably that there could be no fixed
points, i.e., no number X ∈ {0, 1}8 such that f (X) = X .

It should be noted that the χ2 test assumes that each trial in the experiment is independent
of the other trials. This is not strictly true in the case of the different factors in a LAT. The
χ2 measure is still used here though, since it is believed to be a good approximation of the
goodness of fit, despite non-independence of the LAT biases.

The fact that the S-box was chosen at randommeans that it is unlikely to have the properties
that are considered important for S-boxes used in modern ciphers. In particular, randomly
chosen S-boxes are typically vulnerable to both linear and differential cryptanalysis [16].
That this is the case here can be understood by studying Figures 3.3, 3.4, 3.6, and 3.7.
The highest linear bias is 38

256 , slightly higher than the average expected bias of a random
permutation (see Figure 3.7). In regard to resistance to differential cryptanalysis, the delta
uniformity (highest value in the DDT) is also high at 14. This can be put in contrast to the
delta uniformity of S-boxes that have been engineered to provide resistance to differential
cryptanalysis, such as the AES S-box, where the delta uniformity is 4. The large number of
high probability differentials in theDDT alsomeans that it has a large number of differentials
with probability zero.

29

0

50

100

150

200

250

0 50 100 150 200 250
0

5

10

15

20

25

30

35

Figure 3.3. Graphic representation of the SoDark S-box LAT.

0

50

100

150

200

250

0 50 100 150 200 250
0

2

4

6

8

10

12

14

Figure 3.4. Graphic representation of the SoDark S-box DDT.

30

0

50

100

150

200

250

0 50 100 150 200 250

Figure 3.5. Graphic representation of the SoDark S-box DDT modulo 4.

31

0

1000

2000

3000

4000

5000

6000

7000

8000

−40 −30 −20 −10 0 10 20 30 40

In
/o
ut

co
m
bi
na
tio

ns
w
ith

bi
as

2z

2z

Expected random S-box LAT distribution
SoDark S-box LAT distribution

Figure 3.6. Linear approximation distribution.

0.1

1

10

100

1000

10000

−40 −30 −20 −10 0 10 20 30 40

In
/o
ut

co
m
bi
na
tio

ns
w
ith

bi
as

2z

2z

Expected random S-box LAT distribution
SoDark S-box LAT distribution

Figure 3.7. Linear approximation distribution, logarithmic scale.

32

3.6 Equivalence to the Even–Mansour Construction
Due to the commutative property of the XOR operation, each round of the algorithm can
be rewritten as a function of one 24-bit input vector Pr = A ‖ B ‖ C:

Pr+1 = g(Pr ⊕ Kr) (3.20)

where g is a bijective mapping g : {0, 1}24 → {0, 1}24 defined as

g(X) = g(A ‖ B ‖ C) = s(A) ⊕ B′ ‖ B′ ‖ s(C) ⊕ B′ (3.21)

and
B′ = s (s(A) ⊕ B ⊕ s(C)) . (3.22)

The transformation

T(X) = T(A ‖ B ‖ C) = A ⊕ B ‖ B ‖ B ⊕ C (3.23)

must also be applied before the first and after the last round to ensure the rewritten algorithm
is equivalent to the original definition. It follows from the definition of g that it is bijective,
provided that s is bijective. The SoDark algorithm with r rounds can now be expressed as

EK(P) = T (g (g (g (g (T (P) ⊕ K1) ⊕ K2) . . . ⊕ Kr−1) ⊕ Kr)) (3.24)

where Kr = k1 ‖ k3 ‖ k2 with values from in Table 3.2. Figure 3.8 shows the algorithm
expressed in this manner. Decryption is identical to encryption with g−1 in place of g and
the round keys applied in reverse order. A representation of SoDark-6 can be derived in
the same manner.

P T ⊕ G ⊕ G . . . ⊕ G ⊕ G T C

K1 K2 Kr−1 Kr

Figure 3.8. An r-round iterated Even–Mansour construction with round
function G and initial and final transformations T .

33

From Equation 3.24, it now clear that the algorithm is equivalent to the iterated EM
construction [30], with g as the random permutation function and the transformation T

applied to the plaintext and ciphertext. The applications of T and the last application of g
provide no additional security as their inverses are known.

3.7 Properties with Respect to Linear Cryptanalysis
Since the 8-bit S-box had a number of linear combinations of input and output bits with high
bias, the assumption was made that the prevalence of high-bias linearities would remain in
the transformation into a 24-bit S-box. It is not feasible to generate the full LAT for a 24-bit
S-box, since this process has very high time and memory complexities. For that reason,
only a part of the set of possible linearizations has been searched.

Initially, all combinations of one, two, three, and four input and output bits were searched
to find good linearizations. This yielded a number of linearizations with significant bias—
some over 10%. The best linearizations found using this method are presented in Table 3.4.

In order to findmore high-bias linearizations of the 24-bit S-box, a heuristic search algorithm
was used. Different combinations of high-linearity input masks for the 8-bit S-box and their
corresponding output masks were tried on the 24-bit S-box. The results of this were
surprisingly good: Linearizations with up to 14.8% bias were found. The best known
linearizations for the 24-bit S-box are presented in Table 3.5.

In all, 111 linearizations with a bias of more than 10% have been found.

Using a branch and bound algorithm, combinations of the S-box linearizations that approx-
imate five rounds of the cipher were found, i.e., the number of rounds needed for an attack
of the eight-round variant used in 2G ALE. The biases of those linearizations are so low
that even if given all 224 theoretically possible plaintext messages and their corresponding
ciphertexts, the probability of recovering key bits faster than brute force is prohibitively
high.

34

Table 3.4. Linearizations of the 24-bit SoDark S-box found by searching
all one-, two-, three-, and four-bit combinations.

Input mask Output mask Bias
000060 002222 −10.94%
600000 222200 −10.94%
0000C8 00A0A0 −10.94%
C80000 A0A000 −10.94%
00009A 000202 −10.94%
9A0000 202000 −10.94%

Table 3.5. Best known linearizations for the 24-bit SoDark algorithm S-
box.

Input mask Output mask Bias
000073 007777 14.8%
730000 777700 14.8%
000024 009191 14.1%
240000 919100 14.1%
0000C0 001515 −14.1%
C00000 151500 −14.1%

35

THIS PAGE INTENTIONALLY LEFT BLANK

36

CHAPTER 4:
Structural Attacks

4.1 Measures of Complexity
The efficiency of a cryptographic attack is measured by its complexity. It provides a
means of relating the speed of the attack to that of a brute force approach, or to compare
different attacks with each other. An attack’s complexity can be stated for its time, data, and
memory requirements. Time complexity specifies how many operations of some kind that
the attack requires on average. It is normally the most important complexity considered.
Data complexity specifies the amount of data needed in the form of plaintext–ciphertext
pairs, or the like, to perform the attack. Lastly, an attack’s memory complexity describes
the amount of memory that it needs to run.

For the attacks presented in this and following chapters, complexities are stated in expo-
nential notation. In the case of an attack on r rounds, the unit used to describe the time
complexity is the number of r-round encryptions that would take the same time to perform.
As an example, a brute force attack on SoDark—which uses 56-bit keys—is expected to
have a complexity of 255 on average.

The speed of SoDark implementations is almost entirely dependent on the number of S-box
operations performed. The number and speed of all other operations required in encryption,
decryption, and attacks are negligible in comparison. For that reason, the number of S-box
operations required to test one key in a brute force attack will be used to calculate the
relative time complexity of other attacks. Testing one key in a r-round brute force attack
requires 3 · (r − 1) S-box operations.

For data complexities, the unit used is the number of known ciphertexts, plaintext–ciphertext
pairs, or plaintext–ciphertext–tweak tuples that are needed to perform the attack with some
specified probability of success.

For memory complexities, the unit is the cipher block size.

37

For time complexities in particular, the actual complexity required to perform an attack may
vary. This is both because of the “luck” aspect—the correct key could be among the first
or last tried—but also because the number of matching differentials in some intermediate
state of the cipher may be unusually high or low. In the calculations of time complexities,
the average number of one-byte keys implying a specific one-byte target differential was
used. This number is believed to result in the best estimates of average-case performance.
It was calculated from the SoDark S-box DDT as 65280

25544 =
8160
3193 ≈ 2.6. Over the set of all

possible one-byte keys, the average number of possible output differentials for a given input
differential to the S-box is 25544

255 ≈ 100. Both these averages exclude the zero differential,
which only implies itself.

4.2 Attacks on Iterated Even–Mansour Constructions
It is immediately apparent that one round of SoDark provides no security at all since,
given one plaintext–ciphertext–tweak tuple (P, C,T), the key can be recovered by K =
g−1(C) ⊕ P ⊕ T . Two rounds of the algorithm is equivalent to the original one-round EM
construction described in [30].

Known and chosen plaintext attacks on the EM construction corresponding to the lower
bound proven by Even and Mansour in [30] are presented by Daemen in [31]. For the
case of two independent subkeys of size n, Daemen shows a known-plaintext attack with an
average time complexity proportional to 2n−1 and a chosen plaintext attack with complexity
proportional to 2 n

2 . Both of these are significantly faster than the 22n complexity of a brute
force attack. Thus, the two-round SoDark-3 algorithm provides at most 12 bits of security
in regard to this attack. Further insight is given by [32], which shows that independent
subkeys in the single-round EM construction provide no added security compared to a
construction with identical subkeys.

Attacks on various iterated versions of the EM construction are presented in [33], [34],
and [35]. Notably, [34] demonstrates that, for ≤ 4 rounds with two independent keys used
in any order throughout the rounds, the time complexity for recovering the keys is at most
proportional to 2n. (An r-round iterated EM construction uses r + 1 keys.)

38

Generalizing, [36] shows that the an r-round iterated EM construction with independent
round keys has an upper security bound of r · 2 rn

r+1 queries to an oracle, where n is the block
size. The article also shows an attack for an r-round iterated EM construction with time
complexity proportional to 2 rn

2 .

While attacks on the SoDark cipher that consider it as an EM construction are directly ap-
plicable, they are suboptimal because they regard the 24-bit S-box as a random permutation.
In reality, it is a combination of three 8-bit S-boxes (see Equations 3.21 and 3.22). This
structure can be used to mount the more efficient attacks described in the following sections.

4.3 Known-Plaintext Attack on Two-Round SoDark-3
The calculations for two rounds of encryption using SoDark-3 are:

A(1) = s
(
A(0) ⊕ B(0) ⊕ k1 ⊕ t1

)
(4.1)

C(1) = s
(
C(0) ⊕ B(0) ⊕ k2 ⊕ t2

)
(4.2)

B(1) = s
(
B(0) ⊕ A(1) ⊕ C(1) ⊕ k3 ⊕ t3

)
(4.3)

A(2) = s
(
A(1) ⊕ B(1) ⊕ k4 ⊕ t4

)
(4.4)

C(2) = s
(
C(1) ⊕ B(1) ⊕ k5 ⊕ t5

)
(4.5)

B(2) = s
(
B(1) ⊕ A(2) ⊕ C(2) ⊕ k6 ⊕ t6

)
. (4.6)

Since the inverse s−1 and tweak is known

B̂(2) = s−1
(
B(2)

)
⊕ A(2) ⊕ C(2) ⊕ t6 = B(1) ⊕ k6 (4.7)

Ĉ(2) = s−1
(
C(2)

)
⊕ t5 = C(1) ⊕ B(1) ⊕ k5 (4.8)

Â(2) = s−1
(
A(2)

)
⊕ t4 = A(1) ⊕ B(1) ⊕ k4 (4.9)

can be calculated. From Equations 4.1 through 4.6, it is also evident that

Â(2) = s
(
A(0) ⊕ B(0) ⊕ k1 ⊕ t1

)
⊕ s

(
B(0) ⊕ A(1) ⊕ C(1) ⊕ k3 ⊕ t3

)
⊕ k4 (4.10)

39

and

Ĉ(2) = s
(
C(0) ⊕ B(0) ⊕ k2 ⊕ t2

)
⊕ s

(
B(0) ⊕ A(1) ⊕ C(1) ⊕ k3 ⊕ t3

)
⊕ k5. (4.11)

Now, given two plaintext–ciphertext–tweak tuples, the differentials ∆A(1), ∆C(1), and ∆B(0)

can be calculated:

∆A(1) = Â(2)1 ⊕ Â(2)2 ⊕ B̂(2)1 ⊕ B̂(2)2

= s
(
A(0)1 ⊕ B(0)1 ⊕ k1 ⊕ t1,1

)
⊕ s

(
B(0)1 ⊕ A(1)1 ⊕ C(1)1 ⊕ k3 ⊕ t3,1

)
⊕

s
(
A(0)2 ⊕ B(0)2 ⊕ k1 ⊕ t1,2

)
⊕ s

(
B(0)2 ⊕ A(1)2 ⊕ C(1)2 ⊕ k3 ⊕ t3,2

)
⊕

s
(
B(0)1 ⊕ A(1)1 ⊕ C(1)1 ⊕ k3 ⊕ t3,1

)
⊕ s

(
B(0)2 ⊕ A(1)2 ⊕ C(1)2 ⊕ k3 ⊕ t3,2

)
= s

(
A(0)1 ⊕ B(0)1 ⊕ k1 ⊕ t1,1

)
⊕ s

(
A(0)2 ⊕ B(0)2 ⊕ k1 ⊕ t1,2

)
= A(1)1 ⊕ A(1)2

(4.12)

∆C(1) = Ĉ(2)1 ⊕ Ĉ(2)2 ⊕ B̂(2)1 ⊕ B̂(2)2

= s
(
C(0)1 ⊕ B(0)1 ⊕ k2 ⊕ t2,1

)
⊕ s

(
B(0)1 ⊕ A(1)1 ⊕ C(1)1 ⊕ k3 ⊕ t3,1

)
⊕

s
(
C(0)2 ⊕ B(0)2 ⊕ k2 ⊕ t2,2

)
⊕ s

(
B(0)2 ⊕ A(1)2 ⊕ C(1)2 ⊕ k3 ⊕ t3,2

)
⊕

s
(
B(0)1 ⊕ A(1)1 ⊕ C(1)1 ⊕ k3 ⊕ t3,1

)
⊕ s

(
B(0)2 ⊕ A(1)2 ⊕ C(1)2 ⊕ k3 ⊕ t3,2

)
= s

(
C(0)1 ⊕ B(0)1 ⊕ k2 ⊕ t2,1

)
⊕ s

(
C(0)2 ⊕ B(0)2 ⊕ k2 ⊕ t2,2

)
=C(1)1 ⊕ C(1)2

(4.13)

∆B(0) = s−1
(
B̂(2)1 ⊕ k6

)
⊕ s−1

(
B̂(2)2 ⊕ k6

)
⊕ ∆A(1) ⊕ ∆C(1) ⊕ t3,1 ⊕ t3,2. (4.14)

Equations 4.12, 4.13, and 4.14 show that the candidates for key bytes k1 and k2, and k6

can be searched independently of each other and the other key bytes. Each value of k1,
k2, and k6 will imply a value for ∆A(1), ∆C(1), and ∆B(0), respectively, and those that do
not generate the differential calculated from the ciphertext—or the plaintext in the case of
k6—can be immediately discarded. This process is shown in Figure 4.1.

40

A(0) B(0) C(0)

⊕ ⊕
S S

k1 ⊕ t1 k2 ⊕ t2

⊕
S

k3 ⊕ t3

⊕ ⊕

S S

k4 ⊕ t4 k5 ⊕ t5⊕

⊕
S

k6 ⊕ t6

A(2)

B(2)

C(2)

∆B(0)

∆A(1) ∆C(1)

Â(2) Ĉ(2)

B̂(2)

k1 k2

k6

Figure 4.1. Attack on two-round SoDark-3 by guessing key bytes k1,
k2, and k6 independently and matching the results with ∆A(1), ∆C(1), and
∆B(0). The parts of the cipher marked in blue are known or can be calculated
without guessing any part of the key.

On average, 2.6 candidate values each for k1, k2, and k6 are expected as a result of this
search. Now, for each possible tuple k1, k2, k6, the values of k3, k4, k5 are calculated. If
the values of those match for both plaintext–ciphertext–tweak tuples, we have a candidate
key that can be verified against further plaintext–ciphertext–tweak tuples. The full attack
process is described in Algorithm 4.1.

41

In calculating the time complexity of the attack, we first note that 28 keys have to be tested
for each of k1, k2, and k6. Each test uses two S-box operations. This will yield, on average,
2.63 ≈ 17.6 candidate k1, k2, k6 tuples. For each of those, k3, k4, and k5 are calculated
using both plaintext–ciphertext–tweak tuples. This requires six S-box operations per key
tuple, but some of those can be cached in between iterations, see Algorithm 4.1. Therefore,
the total average time complexity of the two-round attack is

6 · 28 + 2 · 2.6 + 2 · 2.62 + 2 · 2.63

3
≈ 29. (4.15)

Any pair of plaintext–ciphertext–tweak tuples that satisfy

∆A(0) ⊕ ∆B(0) ⊕ t1,1 ⊕ t1,2 , 0 (4.16)

∆C(0) ⊕ ∆B(0) ⊕ t2,1 ⊕ t2,2 , 0 (4.17)

∆A(1) ⊕ ∆B(0) ⊕ ∆C(1) ⊕ t3,1 ⊕ t3,2 , 0 (4.18)

can be used in attack. Since the number of tuple pairs that does not satisfy this requirement
is quite small, the attack works for virtually any pair, making the data complexity 2. The
memory complexity is 24.1.

42

Algorithm 4.1 Perform a known-plaintext attack on two-round SoDark-3 and print all
candidate keys.
1: procedure CrackTwoRounds(P1, C1,T1, P2, C2,T2)
2: ∆B(0) ← B(0)1 ⊕ B(0)2
3: B̂(2)1 ← s−1(B(2)1) ⊕ A(2)1 ⊕ C(2)1 ⊕ t6,1
4: B̂(2)2 ← s−1(B(2)2) ⊕ A(2)2 ⊕ C(2)2 ⊕ t6,2
5: ∆B(1) ← B̂(1)1 ⊕ B̂(1)2
6: Â(2)1 ← s−1(A(2)1) ⊕ t4,1
7: Â(2)2 ← s−1(A(2)2) ⊕ t4,2
8: ∆A(1) ← Â(2)1 ⊕ Â(2)2 ⊕ ∆B(1)

9: Ĉ(2)1 ← s−1(C(2)1) ⊕ t5,1
10: Ĉ(2)2 ← s−1(C(2)2) ⊕ t5,2
11: ∆C(1) ← Ĉ(2)1 ⊕ Ĉ(2)2 ⊕ ∆B(1)

12: Lk1 ← empty list
13: Lk2 ← empty list
14: Lk6 ← empty list
15: for all k1 do . 28 possible k1
16: if s(A(0)1 ⊕ B(0)1 ⊕ k1 ⊕ t1,1) ⊕ s(A(0)2 ⊕ B(0)2 ⊕ k1 ⊕ t1,2) = ∆A(1) then
17: Lk1 .append(k1)
18: end if
19: end for
20: for all k2 do . 28 possible k2
21: if s(C(0)1 ⊕ B(0)1 ⊕ k2 ⊕ t2,1) ⊕ s(C(0)2 ⊕ B(0)2 ⊕ k2 ⊕ t2,2) = ∆C(1) then
22: Lk2 .append(k2)
23: end if
24: end for
25: for all k6 do . 28 possible k6
26: if s−1(B̂(2)1 ⊕ k6) ⊕ s−1(B̂(2)2 ⊕ k6) ⊕ ∆A(1) ⊕ ∆C(1) ⊕ t3,1 ⊕ t3,2 = ∆B(0) then
27: Lk6 .append(k6)
28: end if
29: end for

43

30: for all k1 ∈ Lk1 do . Average 2.6 k1

31: A(1)1 ← s(A(0)1 ⊕ B(0)1 ⊕ k1 ⊕ t1,1)
32: A(1)2 ← s(A(0)2 ⊕ B(0)2 ⊕ k1 ⊕ t1,2)
33: for all k2 ∈ Lk2 do . Average 2.6 k2

34: C(1)1 ← s(C(0)1 ⊕ B1 ⊕ k2 ⊕ t2,1)
35: C(1)2 ← s(C(0)2 ⊕ B2 ⊕ k2 ⊕ t2,2)
36: for all k6 ∈ Lk6 do . Average 2.6 k6

37: B(1)1 ← B̂(2)1 ⊕ k6

38: B(1)2 ← B̂(2)2 ⊕ k6

39: k3,1 ← B(0)1 ⊕ A(1)1 ⊕ C(1)1 ⊕ s−1(B(1)1) ⊕ t3,1
40: k3,2 ← B(0)2 ⊕ A(1)2 ⊕ C(1)2 ⊕ s−1(B(1)2) ⊕ t3,2
41: k4,1 ← B(1)1 ⊕ A(1)1 ⊕ Â(2)1
42: k4,2 ← B(1)2 ⊕ A(1)2 ⊕ Â(2)2
43: k5,1 ← B(1)1 ⊕ C(1)1 ⊕ Ĉ(2)1
44: k5,2 ← B(1)2 ⊕ C(1)2 ⊕ Ĉ(2)1
45: if k3,1 = k3,2 and k4,1 = k4,2 and k5,1 = k5,2 then
46: k3 ← k3,1
47: k4 ← k4,1
48: k5 ← k5,1
49: Print(k1 ‖ k2 ‖ k3 ‖ k4 ‖ k5 ‖ k6)
50: end if
51: end for
52: end for
53: end for
54: end procedure

44

4.4 Known-Plaintext Attack on Three-Round SoDark-3
The attack on three-round SoDark-3 is a direct extension of the two-round attack described
in the previous section. The encryption process is analogous to the one shown in Equa-
tions 4.1 through 4.6 and the last round can be partially reversed to calculate Â(3), B̂(3), and
Ĉ(3) using the method shown in Equations 4.7 through 4.9.

The attack is shown graphically in Figure 4.2. It uses the fact that two of the three bytes
in the first and last round keys are identical to perform partial differential matching in the
middle round.

First, by guessing key byte k2, ∆C(1) can be calculated from the plaintext as

C(1)1 = s
(
C(0)1 ⊕ B(0)1 ⊕ k2 ⊕ t2,1

)
(4.19)

C(1)2 = s
(
C(0)2 ⊕ B(0)2 ⊕ k2 ⊕ t2,2

)
(4.20)

∆C(1) = C(1)1 ⊕ C(1)2 (4.21)

and, by calculating ∆A(2) and ∆C(2) in the same way as in Equations 4.12 and 4.13, ∆B(1)

can be calculated from the ciphertext as

∆B(1) = ∆A(2) ⊕ ∆C(2) ⊕ s−1
(
B̂(3)1 ⊕ k2

)
⊕ s−1

(
B̂(3)2 ⊕ k2

)
⊕ t6,1 ⊕ t6,2. (4.22)

Now, the value of ∆C(1) can be compared with ∆B(1) ⊕ ∆Ĉ(2), where ∆Ĉ(2) is calculated by
guessing k1 in addition to k2:

B(2)1 = B̂(3)1 ⊕ k2 (4.23)

B(2)2 = B̂(3)2 ⊕ k2 (4.24)

C(2)1 = B(2)1 ⊕ Ĉ(3)1 ⊕ k1 (4.25)

C(2)2 = B(2)2 ⊕ Ĉ(3)2 ⊕ k1 (4.26)

∆Ĉ(2) = s−1
(
C(2)1

)
⊕ s−1

(
C(2)2

)
⊕ t5,1 ⊕ t5,2. (4.27)

If ∆C(1) and ∆B(1) ⊕ ∆Ĉ(2) are equal, the k1, k2 pair is a candidate for those key bytes. This
is expected to happen with probability 1

256 , resulting in 28 candidates for k1, k2.

45

A(0) B(0) C(0)

⊕ ⊕
S S

k1 ⊕ t1 k2 ⊕ t2

⊕
S

k3 ⊕ t3

⊕ ⊕

S S

k4 ⊕ t4 k5 ⊕ t5

⊕

S

k6 ⊕ t6

⊕ ⊕
k7 ⊕ t7 k1 ⊕ t8

S S

⊕k2 ⊕ t1

⊕
S

A(3)

B(3)

C(3)

∆A(1) ∆C(1)

∆B(1) ∆B(1)

∆Â(2) ∆Ĉ(2)∆B(1)

∆A(2) ∆C(2)

∆B̂(2)∆A(2) ∆C(2)

Â(3) Ĉ(3)

B̂(3)

k1 k2

k1, k2k2, k7
k2

Figure 4.2. Attack on three-round SoDark-3 by first guessing key bytes
k1 and k2 independently and matching on ∆C(1). In the case of that match,
k7 is guessed and matching on ∆A(1) is performed. The parts of the cipher
marked in blue are known or can be calculated without guessing any part of
the key.

46

For each candidate pair k1, k2, possible values for k7 are then sought. This is done by
guessing k7 and comparing ∆A(1) to ∆Â(2) ⊕ ∆B(2):

A(1)1 = s
(
A(0)1 ⊕ B(0)1 ⊕ k1 ⊕ t1,1

)
(4.28)

A(1)2 = s
(
A(0)2 ⊕ B(0)2 ⊕ k1 ⊕ t1,2

)
(4.29)

∆A(1) = A(1)1 ⊕ A(1)2 (4.30)

A(2)1 = Â(3)1 ⊕ B(2)1 ⊕ k7 (4.31)

A(2)2 = Â(3)2 ⊕ B(2)2 ⊕ k7 (4.32)

∆Â(2) = s−1
(
A(2)1

)
⊕ s−1

(
A(2)2

)
⊕ t4,1 ⊕ t4,2. (4.33)

As before, if ∆A(1) and ∆B(1) ⊕∆Â(2) match, then the tuple k1, k2, k7 is a candidate for those
key bytes. For the same reason, we expect 28 candidates for k1, k2, k7 to remain after this
step.

Finally, for each candidate tuple k1, k2, k7, possible values of k3 are found by checking that
the value of k4 implied by a guessed k3 is the same for both plaintext–ciphertext–tweak
tuples:

k4,1 = s
(
A(1)1 ⊕ C(1)1 ⊕ B(0)1 ⊕ k3 ⊕ t3,1

)
⊕ s−1

(
Â(3)1 ⊕ B(2)1 ⊕ k7

)
⊕ A(1)1 ⊕ t4,1 (4.34)

k4,2 = s
(
A(1)2 ⊕ C(1)2 ⊕ B(0)2 ⊕ k3 ⊕ t3,2

)
⊕ s−1

(
Â(3)2 ⊕ B(2)2 ⊕ k7

)
⊕ A(1)2 ⊕ t4,2. (4.35)

Then, the values of k5 and k6 can be calculated from the values already known, thus yielding
a full candidate key:

k5 = s−1
(
C(2)1

)
⊕ B(1)1 ⊕ C(1)1 ⊕ t5,1 (4.36)

k6 = s−1
(
B(2)1

)
⊕ A(2)1 ⊕ C(2)1 ⊕ B(1)1 ⊕ t6,1. (4.37)

The complete attack is shown in Algorithm 4.2. Calculation of the time complexity is done
in the same way as for the two-round attack with the help of the algorithm description:

8 · 28 + 6 · 216

6
≈ 216. (4.38)

47

It is also clear from Algorithm 4.2 that no memory in addition to registers is needed to
perform the attack. Like in the two-round case, the data complexity is 2.

48

Algorithm 4.2 Perform a known-plaintext attack on three-round SoDark-3 and print all
candidate keys.
1: procedure CrackThreeRounds(P1, C1,T1, P2, C2,T2)
2: B̂(3)1 ← s−1(B(3)1) ⊕ A(3)1 ⊕ C(3)1 ⊕ t1,1
3: B̂(3)2 ← s−1(B(3)2) ⊕ A(3)2 ⊕ C(3)2 ⊕ t1,2
4: ∆B(2) ← B̂(3)1 ⊕ B̂(3)2
5: Â(3)1 ← s−1(A(3)1) ⊕ t7,1
6: Â(3)2 ← s−1(A(3)2) ⊕ t7,2
7: ∆A(2) ← Â(3)1 ⊕ Â(3)2 ⊕ ∆B(2)

8: Ĉ(3)1 ← s−1(C(3)1) ⊕ t8,1
9: Ĉ(3)2 ← s−1(C(3)2) ⊕ t8,2

10: ∆C(2) ← Ĉ(3)1 ⊕ Ĉ(3)2 ⊕ ∆B(2)

11: for all k2 do . 28 possible k2
12: C(1)1 ← s(C(0)1 ⊕ B(0)1 ⊕ k2 ⊕ t2,1)
13: C(1)2 ← s(C(0)2 ⊕ B(0)2 ⊕ k2 ⊕ t2,2)
14: ∆C(1) ← C(1)1 ⊕ C(1)2
15: B(2)1 ← B̂(3)1 ⊕ k2

16: B(2)2 ← B̂(3)2 ⊕ k2

17: ∆B(1) ← ∆A(2) ⊕ ∆C(2) ⊕ s−1(B(2)1) ⊕ s−1(B(2)2) ⊕ t6,1 ⊕ t6,2
18: for all k1 do . 28 possible k1
19: C(2)1 ← B(2)1 ⊕ Ĉ(3)1 ⊕ k1

20: C(2)2 ← B(2)2 ⊕ Ĉ(3)2 ⊕ k1

21: ∆Ĉ(2) ← s−1(C(2)1) ⊕ s−1(C(2)2) ⊕ t5,1 ⊕ t5,2
22: if ∆C(1) = ∆B(1) ⊕ ∆Ĉ(2) then . True with probability 2−8

23: A(1)1 ← s(A(0)1 ⊕ B(0)1 ⊕ k1 ⊕ t1,1)
24: A(1)2 ← s(A(0)2 ⊕ B(0)2 ⊕ k1 ⊕ t1,2)
25: ∆A(1) ← A(1)1 ⊕ A(1)2
26: for all k7 do . 28 possible k7
27: A(2)1 ← Â(3)1 ⊕ B(2)1 ⊕ k7

28: A(2)2 ← Â(3)2 ⊕ B(2)2 ⊕ k7

29: Â(2)1 ← s−1(A(2)1) ⊕ t4,1
30: Â(2)2 ← s−1(A(2)2) ⊕ t4,2
31: ∆Â(2) ← Â(2)1 ⊕ Â(2)2

49

32: if ∆A(1) = ∆B(1) ⊕ ∆Â(2) then . True with probability 2−8

33: for all k3 do . 28 possible k3
34: k4,1 ← s(A(1)1 ⊕ C(1)1 ⊕ B(0)1 ⊕ k3 ⊕ t3,1) ⊕ Â(2)1 ⊕ A(1)1
35: k4,2 ← s(A(1)2 ⊕ C(1)2 ⊕ B(0)2 ⊕ k3 ⊕ t3,2) ⊕ Â(2)2 ⊕ A(1)2
36: if k4,1 = k4,2 then . True with probability 2−8

37: k4 ← k4,1
38: k5 ← s−1(C(2)1) ⊕ B(1)1 ⊕ C(1)1 ⊕ t5,1
39: k6 ← s−1(B(2)1) ⊕ A(2)1 ⊕ C(2)1 ⊕ B(1)1 ⊕ t6,1
40: Print(k1 ‖ k2 ‖ k3 ‖ k4 ‖ k5 ‖ k6 ‖ k7)
41: end if
42: end for
43: end if
44: end for
45: end if
46: end for
47: end for
48: end procedure

50

4.5 Known-Plaintext Attack on Four-Round SoDark-3
Figure 4.3 shows the four-round attack. The basic principle of partial differential matching
remains the same. This time the sieving is done using ∆A(2).

The main loop of the attack iterates over all possible values of k2 and k3. In each loop, a list
that associates the values of k4 and ∆A(2) with values of k5, Â(3), B(2), and Ĉ(3) is built from
the ciphertexts using the following calculations and iterating over all values of k4 and k5:

B(3)1 = s−1
(
B(4)1

)
⊕ A(4)1 ⊕ C(4)1 ⊕ k5 ⊕ t4,1 (4.39)

B(3)2 = s−1
(
B(4)2

)
⊕ A(4)2 ⊕ C(4)2 ⊕ k5 ⊕ t4,2 (4.40)

A(3)1 = s−1
(
A(4)1

)
⊕ B(3)1 ⊕ k3 ⊕ t2,1 (4.41)

A(3)2 = s−1
(
A(4)2

)
⊕ B(3)2 ⊕ k3 ⊕ t2,2 (4.42)

C(3)1 = s−1
(
C(4)1

)
⊕ B(3)1 ⊕ k4 ⊕ t3,1 (4.43)

C(3)2 = s−1
(
C(4)2

)
⊕ B(3)2 ⊕ k4 ⊕ t3,2 (4.44)

B(2)1 = s−1
(
B(3)1

)
⊕ A(3)1 ⊕ C(3)1 ⊕ k2 ⊕ t1,1 (4.45)

B(2)2 = s−1
(
B(3)2

)
⊕ A(3)2 ⊕ C(3)2 ⊕ k2 ⊕ t1,2 (4.46)

Â(3)1 = s−1
(
A(3)1

)
⊕ B(2)1 ⊕ t7,1 (4.47)

Â(3)2 = s−1
(
A(3)2

)
⊕ B(2)2 ⊕ t7,2 (4.48)

∆A(2) = Â(3)1 ⊕ Â(3)2 (4.49)

Ĉ(3)1 = s−1
(
C(3)1

)
⊕ B(2)1 ⊕ t8,1 (4.50)

Ĉ(3)2 = s−1
(
C(3)2

)
⊕ B(2)2 ⊕ t8,2. (4.51)

51

A(0) B(0) C(0)

⊕ ⊕
S S

k1 ⊕ t1 k2 ⊕ t2

⊕
S

k3 ⊕ t3

⊕ ⊕
S S

k4 ⊕ t4 k5 ⊕ t5

⊕
S

k6 ⊕ t6

⊕ ⊕k7 ⊕ t7 k1 ⊕ t8

S S

⊕
S

k2 ⊕ t1

⊕ ⊕k3 ⊕ t2 k4 ⊕ t3

S S
⊕k5 ⊕ t4

⊕
S

A(4)

B(4)

C(4)

B̂(2)∆A(2) C(2)

Ĉ(3)

Â(4) Ĉ(4)

B̂(4)

k1, k2, k3, k4 k1, k2, k3, k5

k2, k3, k4, k5

k2, k3, k4, k5

Figure 4.3. Attack on four-round SoDark-3 by matching on ∆A(2). The
parts of the cipher marked in blue are known or can be calculated without
guessing any part of the key. 52

With the list built, the next step is to iterate over all possible values of k1 and k4 and calculate
∆A(2) from the plaintexts:

A(1)1 = s
(
A(0)1 ⊕ B(0)1 ⊕ k1 ⊕ t1,1

)
(4.52)

A(1)2 = s
(
A(0)2 ⊕ B(0)2 ⊕ k1 ⊕ t1,2

)
(4.53)

C(1)1 = s
(
C(0)1 ⊕ B(0)1 ⊕ k2 ⊕ t2,1

)
(4.54)

C(1)2 = s
(
C(0)2 ⊕ B(0)2 ⊕ k2 ⊕ t2,2

)
(4.55)

B(1)1 = s
(
A(1)1 ⊕ B(0)1 ⊕ C(1)1 ⊕ k3 ⊕ t3,1

)
(4.56)

B(1)2 = s
(
A(1)2 ⊕ B(0)2 ⊕ C(1)2 ⊕ k3 ⊕ t3,2

)
(4.57)

A(2)1 = s
(
A(1)1 ⊕ B(1)1 ⊕ k4 ⊕ t4,1

)
(4.58)

A(2)2 = s
(
A(1)2 ⊕ B(1)2 ⊕ k4 ⊕ t4,2

)
(4.59)

∆A(2) = A(2)1 ⊕ A(2)2 . (4.60)

For each value of ∆A(2) calculated from the plaintext, the corresponding entries in the list
calculated from the ciphertext are retrieved. Each entry will contain the implied value of
k5 and allow the calculation of k1, k6, and k7:

C(2)1 = s
(
B(1)1 ⊕ C(1)1 ⊕ k5 ⊕ t5,1

)
(4.61)

C(2)2 = s
(
B(1)2 ⊕ C(1)2 ⊕ k5 ⊕ t5,2

)
(4.62)

k1,1 = C(2)1 ⊕ Ĉ(3)1 (4.63)

k1,2 = C(2)2 ⊕ Ĉ(3)2 (4.64)

k6,1 = B(1)1 ⊕ A(2)1 ⊕ C(2)1 ⊕ t6,1 ⊕ s−1
(
B(2)

)
(4.65)

k6,2 = B(1)2 ⊕ A(2)2 ⊕ C(2)2 ⊕ t6,2 ⊕ s−1
(
B(2)

)
(4.66)

k7,1 = A(2)1 ⊕ Â(3)1 (4.67)

k7,2 = A(2)2 ⊕ Â(3)2 . (4.68)

53

Finally, good matches can be identified by checking that k1 = k1,1 = k1,2, k6,1 = k6,2, and
k7,1 = k7,2. Algorithm 4.3 shows the attack process. That description is again used to
calculate the time complexity of the attack which is

2 · 28 + 4 · 224 + 8 · 232 + 4 · 2.6 · 232

9
≈ 232.9. (4.69)

The list used in the attack requires memory equivalent to about 217.6 blocks. The data
complexity remains 2.

54

Algorithm 4.3 Perform a known-plaintext attack on four-round SoDark-3 and print all
candidate keys.
1: procedure CrackFourRounds(P1, C1,T1, P2, C2,T2)
2: B̂(4)1 ← s−1(B(4)1) ⊕ A(4)1 ⊕ C(4)1 ⊕ t4,1
3: B̂(4)2 ← s−1(B(4)2) ⊕ A(4)2 ⊕ C(4)2 ⊕ t4,2
4: Â(4)1 ← s−1(A(4)1) ⊕ t2,1
5: Â(4)2 ← s−1(A(4)2) ⊕ t2,2
6: Ĉ(4)1 ← s−1(C(4)1) ⊕ t3,1
7: Ĉ(4)2 ← s−1(C(4)2) ⊕ t3,2
8: for all k2 do . 28 possible k2
9: C(1)1 ← s(B1 ⊕ C1 ⊕ k2 ⊕ t2,1)
10: C(1)2 ← s(B2 ⊕ C2 ⊕ k2 ⊕ t2,2)
11: for all k3 do . 28 possible k3
12: L ← empty list . Indexed by k4,∆A(2)

13: for all k4, k5 do . 216 possible k4, k5
14: B(3)1 ← B̂(4)1 ⊕ k5

15: B(3)2 ← B̂(4)2 ⊕ k5

16: A(3)1 ← Â(4)1 ⊕ B(3)1 ⊕ k3

17: A(3)2 ← Â(4)2 ⊕ B(3)2 ⊕ k3

18: C(3)1 ← Ĉ(4)1 ⊕ B(3)1 ⊕ k4

19: C(3)2 ← Ĉ(4)2 ⊕ B(3)2 ⊕ k4

20: B(2)1 ← s−1(B(3)1) ⊕ A(3)1 ⊕ C(3)1 ⊕ k2 ⊕ t1,1
21: B(2)2 ← s−1(B(3)2) ⊕ A(3)2 ⊕ C(3)2 ⊕ k2 ⊕ t1,2
22: Â(3)1 ← s−1(A(3)1) ⊕ B(2)1 ⊕ t7,1
23: Â(3)2 ← s−1(A(3)2) ⊕ B(2)2 ⊕ t7,2
24: Ĉ(3)1 ← s−1(C(3)1) ⊕ B(2)1 ⊕ t8,1
25: Ĉ(3)2 ← s−1(C(3)2) ⊕ B(2)2 ⊕ t8,2
26: ∆A(2) ← Â(3)1 ⊕ Â(3)2
27: L.append(k4,∆A(2), k5, Â(3)1 , Â(3)2 , Ĉ(3)1 , Ĉ(3)2 , B(2)1 , B(2)2)
28: end for

55

29: for all k1 do . 28 possible k1
30: A(1)1 ← s(A(0)1 ⊕ B(0)1 ⊕ k1 ⊕ t1,1)
31: A(1)2 ← s(A(0)2 ⊕ B(0)2 ⊕ k1 ⊕ t1,2)
32: B(1)1 ← s(B(0)1 ⊕ A(1)1 ⊕ C(1)1 ⊕ k3 ⊕ t3,1)
33: B(1)2 ← s(B(0)2 ⊕ A(1)2 ⊕ C(1)2 ⊕ k3 ⊕ t3,2)
34: for all k4 do . 28 possible k4
35: A(2)1 ← s(A(1)1 ⊕ B(1)1 ⊕ k4 ⊕ t4,1)
36: A(2)2 ← s(A(1)2 ⊕ B(1)2 ⊕ k4 ⊕ t4,2)
37: ∆A(2) ← A(2)1 ⊕ A(2)2
38: for all k5, Â(3)1 , Â(3)2 , Ĉ(3)1 , Ĉ(3)2 , B(2)1 , B(2)2 ∈ L[k4,∆A(2)] do

. 2.6 iterations on average
39: C(2)1 ← s(B(1)1 ⊕ C(1)1 ⊕ k5 ⊕ t5,1)
40: C(2)2 ← s(B(1)2 ⊕ C(1)2 ⊕ k5 ⊕ t5,2)
41: k1,1 ← C(2)1 ⊕ Ĉ(3)1
42: k1,2 ← C(2)2 ⊕ Ĉ(3)2
43: k6,1 ← s−1(B(2)1) ⊕ A(2)1 ⊕ C(2)1 ⊕ B(1)1 ⊕ t6,1
44: k6,1 ← s−1(B(2)2) ⊕ A(2)2 ⊕ C(2)2 ⊕ B(1)2 ⊕ t6,2
45: k7,1 ← A(2)1 ⊕ Â(3)1
46: k7,2 ← A(2)2 ⊕ Â(3)2
47: if k1 = k1,1 = k1,2 and k6,1 = k6,2 and k7,1 = k7,2 then
48: k6 ← k6,1
49: k7 ← k7,1
50: Print(k1 ‖ k2 ‖ k3 ‖ k4 ‖ k5 ‖ k6 ‖ k7)
51: end if
52: end for
53: end for
54: end for
55: end for
56: end for
57: end procedure

56

4.6 Known-Plaintext Attack on Five-Round SoDark-3
The attack on five-round SoDark-3 is structurally simpler than the previously described at-
tacks and can be described entirely by treating the cipher as an iterated Even–Mansour
construction. It is shown in Figure 4.4. Since the first two rounds use key bytes
k1, k2, k3, k4, k5, k6 and the last two rounds use key bytes k1, k3, k4, k5, k6, k7, sieving can be
done in the middle by comparing differentials, thus bypassing the third round key bytes. By
looping over the common key bytes k1, k3, k4, k5, k6 in an outer loop, the memory require-
ments are decreased significantly when compared to a standard MITM attack. The attack
is equivalent to the three-subset MITM attack described in [37].

P T ⊕ G ⊕ G ⊕ G ⊕ G ⊕ G T C

k123 ⊕ t123 k456 ⊕ t456 k712 ⊕ t781 k345 ⊕ t234 k671 ⊕ t567

v w

k1, k2, k3, k4, k5, k6 k1, k3, k4, k5, k6, k7

Figure 4.4. Attack on five-round SoDark-3.

Using the notation from Equation 3.24, the attack works by calculating

v1 = g
(
g
(
T(P1) ⊕ k123 ⊕ t123,1

)
⊕ k456 ⊕ t456,1

)
⊕ t781,1 (4.70)

v2 = g
(
g
(
T(P2) ⊕ k123 ⊕ t123,2

)
⊕ k456 ⊕ t456,2

)
⊕ t781,2 (4.71)

∆v = v1 ⊕ v2 (4.72)

for all possible values of k1, k2, k3, k4, k5, k6 and storing them in a list indexed by ∆v. Then
the same calculation is done for all possible values of k1, k3, k4, k5, k6, k7

w1 = g
−1

(
g−1

(
g−1(T(C1)) ⊕ k671 ⊕ t567,1

)
⊕ k345 ⊕ t234,1

)
(4.73)

w2 = g
−1

(
g−1

(
g−1(T(C2)) ⊕ k671 ⊕ t567,2

)
⊕ k345 ⊕ t234,2

)
(4.74)

∆w = w1 ⊕ w2. (4.75)

57

The value ∆w is then used to look up the key bytes k1, k2, k3, k4, k5, k6 in the list. If the
common key bytes k2, k3, k4, k5, k6 match, the candidate key can be tested against more
plaintext–ciphertext–tweak tuples.

Algorithm 4.4 implements the attack. The following time complexity is calculated from
that algorithm:

12 · 240 (
28 + 28)

12
= 249. (4.76)

The generated list uses 28 blocks of storage and the data complexity is still 2.

Algorithm 4.4 Perform a known-plaintext attack on five-round SoDark-3 and print all
candidate keys.
1: procedure CrackFiveRounds(P1, C1,T1, P2, C2,T2)
2: for all k1, k3, k4, k5, k6 do . 240 possible k1, k3, k4, k5, k6
3: L ← empty list
4: for all k2 do . 28 possible k2
5: v1 ← g(g(T(P1) ⊕ k123 ⊕ t123,1) ⊕ k456 ⊕ t456,1)
6: v2 ← g(g(T(P2) ⊕ k123 ⊕ t123,2) ⊕ k456 ⊕ t456,2)
7: ∆v ← v2 ⊕ v2
8: L.append(∆v, k1)
9: end for
10: for all k7 do . 28 possible k7
11: w1 ← g−1(g−1(g−1(T(C1)) ⊕ k671 ⊕ t567,1) ⊕ k345 ⊕ t234,1)
12: w2 ← g−1(g−1(g−1(T(C2)) ⊕ k671 ⊕ t567,2) ⊕ k345 ⊕ t234,2)
13: ∆w ← w1 ⊕ w2
14: for all k1 ∈ L[∆w] do
15: Print(k1 ‖ k2 ‖ k3 ‖ k4 ‖ k5 ‖ k6 ‖ k7)
16: end for
17: end for
18: end for
19: end procedure

58

4.7 Chosen-Tweak Attack on Six- and Seven-Round
SoDark-3

Structural attacks of the types described previously, where the cipher is split in parts that
use different subsets of the full seven-byte key, cannot be extended beyond five rounds.
Nonetheless, for certain combinations of plaintext, ciphertext, tweak, and key, it is possible
to predict part of the internal state of the cipher from the ciphertext alone.

For the six-round attack, consider two plaintext–ciphertext–tweak tuples where P1 , P2,
C1 = C2 and all bytes in the tweak are identical except for t5,1 , t5,2. The key schedule in
Table 3.2 shows that this is possible if and only if ∆A(4) = ∆t5 = t5,1 ⊕ t5,2, ∆B(4) = 0, and
∆C(4) = 0 . This known internal differential can be used to calculate ∆B(3) and ∆C(3) in the
following way: First,

∆B(3) = ∆A(4) ⊕ s−1
(
B(4)1

)
⊕ s−1

(
B(4)2

)
⊕ ∆C(4) ⊕ ∆t4. (4.77)

Since B(4)1 = B(4)2 , ∆C(4) = 0, and ∆t4 = 0, this reduces Equation 4.77 to

∆B(3) = ∆A(4) = ∆t5. (4.78)

For the same reason,

∆C(3) = ∆B(3) ⊕ s−1
(
C(4)1

)
⊕ s−1

(
C(4)2

)
⊕ ∆t3

= ∆B(3) = ∆A(4) = ∆t5.
(4.79)

This knowledge allows sieving of possible k1, k2, k3, k4, k5, k6 by calculating ∆C(3) from the
plaintexts. The process is illustrated in Figure 4.5.

Unlike the previous attacks, which work on arbitrary message tuples, the attack on six
rounds requires a specific output differential. The first step of the attack is therefore to find a
plaintext–ciphertext–tweak tuple that satisfies it. Assuming that the cipher’s randomization
properties after four rounds are good,1 all differentials after the fourth and subsequent
rounds have probability 2−24. The number of pairs of plaintext–ciphertext–tweak tuples n

1This is investigated in [5].

59

A(0) B(0) C(0)

⊕ ⊕
S S

k1 ⊕ t1 k2 ⊕ t2

⊕
S

k3 ⊕ t3

⊕ ⊕
S S

k4 ⊕ t4 k5 ⊕ t5

⊕
S

k6 ⊕ t6

⊕ ⊕k7 ⊕ t7 k1 ⊕ t8

S S

⊕
S

k2 ⊕ t1

⊕ ⊕k3 ⊕ t2 k4 ⊕ t3

S S

k5 ⊕ t4⊕
S∆A(4) = ∆t5

∆B(4) = 0

∆C(4) = 0

∆B(3) = ∆t5

∆C(3) = ∆t5

k1, k2, k3,
k4, k5, k6

Figure 4.5. The first four rounds in the attacks on six- and seven-round
SoDark-3.

60

required for one of them to have the required output differential with 50% probability is
therefore (

1 − 2−24
)n
=

1
2
=⇒ n =

log 1
2

log
(
224 − 1

)
− log

(
224) ≈ 11,629,080. (4.80)

Unlike in a normal birthday attack, the required pairs of plaintext–ciphertext–tweak tuples
must be formed so that each tuple in the pair has a different tweak. The most efficient
way to achieve this in an oracle model is to generate plaintext–ciphertext–tweak tuples for
two different tweaks with t5,1 , t5,2 and all other tweak bytes identical. This way, with n

generated tuples per tweak, n2 tuple-pairs can be formed. Thus, only
√

11,629,080 ≈ 3410 ≈
211.7 tuples are required for each tweak in order to find the required output differential with
50% probability. This is, in effect, a version of the birthday paradox with two subsets.

Algorithm 4.5 performs the six-round attack. Since the filtering step can be done without
any S-box operations, its time complexity can be neglected. The only source of complexity
that remains is the calculation of ∆C(3), which is

2 · 28 + 2 · 216 + 2 · 224 + 2 · 232 + 2 · 240 + 4 · 248

15
≈ 246.1. (4.81)

No memory in addition to registers is needed for the attack. Figure 4.6 shows the trade-off
curve for the relationship between the number of available tuples and probability of success.

The attack is extended to seven rounds by the addition of an initial filtering step to find a
pair with the correct fourth-round differential. For each generated pair of tuples, calculate

∆A(7) = A(7)1 ⊕ A(7)2 (4.82)

∆C(7) = C(7)1 ⊕ C(7)2 . (4.83)

If ∆A(7) = 0 and ∆C(7) = 0, continue by calculating

B̂(7)1 = s−1
(
B(7)1

)
⊕ A(7)1 ⊕ C(7)1 ⊕ t5,1 (4.84)

B̂(7)2 = s−1
(
B(7)2

)
⊕ A(7)2 ⊕ C(7)2 ⊕ t5,2 (4.85)

∆B(6) = B̂(7)1 ⊕ B̂(7)2 . (4.86)

61

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 0.2 0.4 0.6 0.8 1

Tu
pl
es

pe
rt
w
ea
k

Probability of success

√
log(1−x)

log(224−1)−log(224)

Figure 4.6. Trade-off curve between data and probability of success in the
case with two sets of tweaks of same size.

If ∆B(6) = 0, the pair has the required fourth-round differential and the cipher can be
attacked in the same way as the six-round version. Note that this filtering step does not
involve guessing any key bits.

The addition of a filtering step increases the time complexity for an attack with 50%
probability of success by a negligible amount:

2 · 11,629,080 + 2 · 28 + 2 · 216 + 2 · 224 + 2 · 232 + 2 · 240 + 4 · 248

18
≈ 246.1. (4.87)

62

Algorithm 4.5 Perform a chosen-tweak attack on six-round SoDark-3 and print all candi-
date keys.
Require: C1 = C2, t1,1 = t1,2, t2,1 = t2,2, t3,1 = t3,2, t4,1 = t4,2, t5,1 , t5,2, t6,1 = t6,2, t7,1 = t7,2,

t8,1 = t8,2
1: procedure CrackSixRounds(P1, C1,T1, P2, C2,T2)
2: ∆t5 = t5,1 ⊕ t5,2
3: for all k1 do
4: A(1)1 ← s(A(0)1 ⊕ B(0)1 ⊕ k1 ⊕ t1,1)
5: A(1)2 ← s(A(0)2 ⊕ B(0)2 ⊕ k1 ⊕ t1,2)
6: for all k2 do
7: C(1)1 ← s(C(0)1 ⊕ B(0)1 ⊕ k2 ⊕ t2,1)
8: C(1)2 ← s(C(0)2 ⊕ B(0)2 ⊕ k2 ⊕ t2,2)
9: for all k3 do
10: B(1)1 ← s(A(1)1 ⊕ B(0)1 ⊕ C(1)1 ⊕ k3 ⊕ t3,1)
11: B(1)2 ← s(A(1)2 ⊕ B(0)2 ⊕ C(1)2 ⊕ k3 ⊕ t3,2)
12: for all k4 do
13: A(2)1 ← s(A(1)1 ⊕ B(1)1 ⊕ k4 ⊕ t4,1)
14: A(2)2 ← s(A(1)2 ⊕ B(1)2 ⊕ k4 ⊕ t4,2)
15: for all k5 do
16: C(2)1 ← s(C(1)1 ⊕ B(1)1 ⊕ k5 ⊕ t5,1)
17: C(2)2 ← s(C(1)2 ⊕ B(1)2 ⊕ k5 ⊕ t5,2)
18: for all k6 do
19: B(2)1 ← s(A(2)1 ⊕ B(1)1 ⊕ C(2)1 ⊕ k6 ⊕ t6,1)
20: B(2)2 ← s(A(2)2 ⊕ B(1)2 ⊕ C(2)2 ⊕ k6 ⊕ t6,2)
21: C(3)1 ← s(C(2)1 ⊕ B(2)1 ⊕ k1 ⊕ t8,1)
22: C(3)2 ← s(C(2)2 ⊕ B(2)2 ⊕ k1 ⊕ t8,2)
23: ∆C(3) ← C(3)1 ⊕ C(3)2
24: if ∆C(3) = ∆t5 then
25: Print(k1 ‖ k2 ‖ k3 ‖ k4 ‖ k5 ‖ k6)
26: end if
27: end for
28: end for
29: end for
30: end for
31: end for
32: end for
33: end procedure

63

4.8 Chosen-Tweak Attack on Eight-Round SoDark-3
The attack on six and seven rounds in the previous section can be extended to an attack
on eight rounds, i.e., the full Lattice algorithm from the 2G ALE standard. Unlike the
previous attack, the required output differential cannot be identified with certainty. It can,
however, be identified with high probability. Figure 4.7 shows the last two rounds of the
eight-round SoDark-3. The sought differential after the fourth round exists if and only if
∆A(7) = ∆C(7) = 0 and ∆B̂(7) = ∆t5. In that case,

∆Â(8) = ∆A(7) ⊕ ∆B(7) = ∆B(7) (4.88)

∆Ĉ(8) = ∆C(7) ⊕ ∆B(7) = ∆B(7) (4.89)

and therefore
∆Â(8) = ∆Ĉ(8) = ∆B(7). (4.90)

This differential just before the eighth round S-boxes therefore indicates a high probability
that the seventh round differential is the required one. An attack that has 50% probability
of success requires 11,629,080 plaintext–ciphertext–tweak tuple pairs, see Equation 4.80.
The average number of candidate pairs remaining after the filtering step in that case is
2−16 · 11,629,080 ≈ 177.4 ≈ 27.5.

For plaintext–ciphertext–tweak tuples that satisfy Equation 4.90, the assumption is made
that they have the correct fourth-round differential and the values of k3 that cause

∆B̂(7) = s−1
(
s−1

(
B(8)1

)
⊕ A(8)1 ⊕ C(8)1 ⊕ k3 ⊕ t8,1

)
⊕

s−1
(
s−1

(
B(8)2

)
⊕ A(8)2 ⊕ C(8)2 ⊕ k3 ⊕ t8,2

)
= t5,1 ⊕ t5,2

(4.91)

can be calculated. Candidate pairs remaining after the first filtering step will satisfy this
relationship with probability 100

256 . In the 50% probability of success case, this will result in
177.4100

256 ≈ 69.3 ≈ 26.1 remaining candidate pairs.

For each remaining pair, the values of k1, k2, k3, k4, k5, k6 that give ∆C(3) = ∆t5 are searched
for using the same method as in the previous six- and seven-round attack, with the exception

64

A(6) B(6) C(6)

⊕ ⊕
S S

k5 ⊕ t3 k6 ⊕ t4

⊕

S

k7 ⊕ t5

⊕ ⊕

S S

k1 ⊕ t6 k2 ⊕ t7

⊕

⊕
S

k3 ⊕ t8

A(8)

B(8)

C(8)

∆B(6) = 0

∆A(7) = 0 ∆C(7) = 0∆B̂(7)

Â(8) Ĉ(8)

∆B(7)

B̂(8)

k3

Figure 4.7. The last two rounds in the attack on eight-round SoDark-3.

that only the values of k3 that satisfy Equation 4.91 for that pair are tried. We expect each
candidate pair that survived filtering step two to have 2.6 candidate values for k3 on average.

We can now calculate the total time complexity for the eight-round attack:

1
21
·
(
6 · 11,629,080 + 4 · 27.5 · 28+

26.1 ·
(
2 · 28 + 2 · 216 +

2.6
28 ·

(
2 · 224 + 2 · 232 + 2 · 240 + 4 · 248

)))
≈ 245.1.

(4.92)

65

The complexity of this attack is lower than the attacks on six and seven rounds presented
in the previous section. This is because the differential after the next to last round—which
is known with high probability—is used to deduce information about part of the key. Like
in the six- and seven-round attacks, 211.7 plaintext–ciphertext–tweak tuples are required to
recover the key with 50% probability. The memory requirements also remain the same. No
memory in addition to registers is required.

4.9 Experimental Verification
All attacks described in this chapter have been implemented in the C programming language
and verified in practice. The implementations are publicly available [38].

66

CHAPTER 5:
Logic Circuit Representations of the SoDark S-box

5.1 Introduction
For the attacks in the following chapters, an efficient logic circuit representation of the S-box
is needed. Such a representation describes the relationship between the inputs and outputs
of the S-box as a circuit of logic gates. A logic circuit implementation of an S-box considers
each of the S-box output bits as a separate Boolean function of the same input variables.
In the case of the SoDark S-box with eight inputs and eight outputs, this means eight
Boolean functions of eight input variables. This is in contrast to representing the S-box as,
for example, the algebraic normal form (ANF) of the Boolean functions it implements, or
as a lookup table.

Since finding the optimum logic circuit for a given S-box is a NP-complete problem and
is intractable even for very small S-boxes, heuristic methods must be used in all but very
special cases. Although these heuristic methods are significantly faster than a brute force
search, they are still quite slow and take a fair amount of time to perform, even on modern
computers. In particular, for the logic circuit representations presented later that use 3-bit
lookup tables (LUT), use of the NPS Hamming high-performance computing cluster was
necessary.

In [19], Biham presents an algorithm for generating a logic circuit for the DES S-box. It
breaks down the truth table of each Boolean function into 16 functions of two variables and
then uses the remaining four “free” variables to choose between those 16 functions. Using
this algorithm, Biham generates logic circuit representations of the DES S-box that require
100 gates on average.

It is important to note that, although a logic circuit with fewer gates is often faster, this is
not always the case. Which circuit is faster in practice depends on the technology on which
it is implemented. In the case of hardware implementations in ASICs and FPGAs, latency

67

is normally of great concern. That means, the signal paths to different inputs of the same
gate must have approximately the same delay. Too large a delay will necessitate a lower
clock frequency and thus a lower speed.

Software implementations are typically limited by the available number of processor reg-
isters. This limits the number of gate outputs that are active in parallel. If the number of
active outputs is higher than the number of available registers, memory must be used for
storing the surplus output variables. This comes with a significant performance cost. Logic
circuit representations used for generating algebraic systems as input to SAT solvers have
similar problems. In that case, some Boolean gates result in CNF representations that are
much easier for the SAT solvers to handle than others.

5.2 Kwan’s Algorithm
In [39], Kwan presents an improvement to Biham’s method from [19]. It works by suc-
cessively adding new gates to a circuit through recursive search while trying all possible
orderings of input and output bits. In this case, with eight input and eight output bits, it
requires testing 8! · 8! combinations.

The recursive algorithm described in [39] takes an existing partial gate circuit as input
together with a target truth table, a “don’t care” mask, and a list of input bits already used.
It returns a gate in the circuit whose truth table is identical to the target, except for the bit
positions where the don’t care mask is zero. Initially, the gate circuit will only consist of
the eight input bits.

Each invocation of the algorithm can be split up into five successively more complex
steps [39]:

1. Check if there already is a gate in the logic circuit with the required output truth table.
If so, return that gate.

2. Check if there is a gate with a truth table that is the logic NOT of the required output
truth table. If so, add a NOT gate to the logic circuit and return it.

3. Try all combinations of two gates using AND, OR, XOR, NOT, and ANDNOT gates
and check if the resulting output is equal to the target truth table. If so, add the gates
and return the output gate.

68

4. Try all combinations of three gates using AND, OR, XOR, NOT, and ANDNOT
gates. If one of the combinations results in the required output table, add the gates to
the circuit and return the output gate.

5. Split the truth table on one of the unused input bits by setting the corresponding bits
in the don’t care mask to zero. Then call the algorithm twice recursively: once with a
don’t care mask corresponding to the input bit equal to one and once with a don’t care
mask corresponding to the input bit equal to zero. Combine the output from the two
calls with a two gate multiplexer. Perform this once for each of the remaining unused
input bits and with two different multiplexers. Return the combination of input bit
and multiplexer that results in the logic circuit with the fewest gates.

The implementation details of Kwan’s algorithm are somewhat complex and the reader is
referred to [39] for a complete description.

The complexity of the algorithm increases for each of the five steps. The first and second
steps have complexity O(n), where n is the number of gates in the partial circuit. In
step three, this increases to O(n2), since all possible combinations of two gates must be
considered. For the same reason, the complexity of step four is O(n3). The most significant
complexity is in step five: Due to the recursion in combinationwith the testing of all possible
input bits, this results in a complexity of O(b!), where b is the number of unused input bits.
Even though the value of b! is manageable in the case of the SoDark S-box, where b ≤ 8,
the big O notation hides the high complexity of each individual recursive call, which can
include a complexity of O(n3) in addition to the O(b!) term.

Finding the most efficient logic circuit for all eight output functions requires testing all 8!
orders of building those eight output functions. The result is a total complexity of Kwan’s
algorithm of O(b! · b!), where b is the number of S-box input and output bits.

5.3 Improvements to Kwan’s Algorithm
An anonymous software project for building three-bit LUT circuit representations of S-
boxes is available as a GitHub repository [40]. It contains several improvements to Kwan’s
algorithm.

69

Apart from the generation of LUT-based logic circuits, the two major improvements to
Kwan’s algorithm introduced in [40] are circuit randomization and a fast feasibility checking
algorithm.

The algorithm described by Kwan is deterministic and will always produce the same output
given the same input. Due to the heuristic nature of the algorithm, there is no guarantee
that this is the optimal result. By introducing randomization of the search order when
searching for combinations of gates in steps one through four in the previous section, we
can find equivalent—and possibly better—gate circuits simply by running the algorithm
several times.

The fast feasibility checking algorithm described in Algorithm 5.1 significantly improves
the speed of Kwan’s algorithm by short-circuiting parts of step four in the previous section.
It does this by performing a constant-time feasibility check for each combination of three
gates before testing a large number of possible ways to combine them. The feasibility check
itself is due to an interesting observation: Three gates with arbitrary truth tables can be
combined to form an arbitrary target truth table if and only if the target truth table can be
expressed as a product-of-sums expansion of the three input truth tables [41]. The feasibility
checking algorithm can be extended and applied to an arbitrary number of input gates in a
straightforward way.

When generating LUT-based circuits, additional steps are added between steps four and five
in Kwan’s algorithm. These steps search for combinations of three, five, and seven gates
together with one, two, and three LUTs, respectively, to create the desired output truth table.
Considering the large complexities involved in searching through all possible combinations
of five and seven gates in the partial circuit, this would not be possible without the speed
increase provided by the fast feasibility checking algorithm, especially considering that
there are 256 possible functions for each LUT.

70

Algorithm 5.1 Check if a target truth table can be produced by combining three input truth
tables using any combination of gates. Adapted from [40].
1: procedure Check3Possible(target, mask, table1, table2, table3)
2: match← 0
3: t1 ← NOT table1
4: i ← 0
5: for i < 2 do
6: t2 ← NOT table2
7: k ← 0
8: for k < 2 do
9: t3 ← NOT table3
10: m← 0
11: for m < 2 do
12: r ← t1 AND t2 AND t3
13: if (target AND r AND mask) = (r AND mask) then
14: match← match OR r
15: else if (target AND r AND mask) , 0 then
16: return false
17: end if
18: t3 ← NOT t3
19: m← m + 1
20: end for
21: t2 ← NOT t2
22: k ← k + 1
23: end for
24: t1 ← NOT t1
25: i ← i + 1
26: end for
27: if (target AND mask) = (match AND mask) then
28: return true
29: else
30: return false
31: end if
32: end procedure

71

5.4 Software Implementation
For this research, Kwan’s algorithm from [39], along with the optimizations and modifi-
cations from [40], was implemented in the C programming language [42]. The resulting
program can find logic circuit representations of the SoDark S-box that are suitable for
various types of implementations on different platforms. This includes representations that
use only the standard AND, OR, NOT, and XOR gates as well as an option that also allows
for ANDNOT gates. Circuits can be built for a single output bit each, or for any combination
of output bits.

In addition to using the number of gates as a metric when building the circuits, a metric that
promotes circuits with efficient CNF representations is also available. The latter is intended
for generating S-box circuit representations that have high performance when used with
SAT solvers. It uses the number of three-variable minterms in the CNF representation of
the logic circuit as a measure of the circuit’s SAT performance.

Circuits of 3-bit LUTs can also be generated. This allows fast bitslicing implementations on
Nvidia platforms that implement the lop3.b32 Parallel Thread Execution (PTX) instruc-
tion, as described in Chapter 7. The logic circuits generated by the program can be output
as C or CUDA source code as well as in the Graphwiz [43] DOT format for visualization.

5.5 Generated Circuits
The program described in the previous section was used to generate circuits for the S-box
that are suitable for implementations on general purpose computers, CUDA GPUs, and for
conversion to CNF for use with SAT solvers. Despite the optimizations made, and the use
of 1024 processor cores on the Hamming high-performance computer cluster, creating a
combined logic circuit for all eight Boolean functions using LUTs proved to be too large a
problem. Instead, eight separate circuits were created. Figures 5.1 and 5.2 show examples
of the generated circuits.

72

IN 0

OR

ORXOR

OR

AND

XOR

ANDNOT

ANDNOT

IN 1

AND

IN 2

AND

OR

ANDNOT

OR

AND

IN 3

XOR

AND

OR

IN 4

XOR

XOR

IN 5

OR

AND

OR

IN 6

AND

XOR

OR

AND

AND

IN 7

OR

OR

OR

XOR

OR

AND

ANDNOT

OR

AND

ANDNOT

XOR

XOR

ANDNOT

XOR

XOR

XOR

OR

XOR

ANDNOT

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

OUT 6

Figure 5.1. Logic circuit representation, with 60 gates, of the Boolean func-
tion for output bit 6 of the SoDark S-box.

73

IN 0

ac498f

cd

d9

be

IN 1

18

a4

28

4b

IN 2

ac IN 3

ac

IN 4

acac

ac

ac

IN 5

ac

e1

ac

d2

IN 6

97

IN 7

ac

ac

9d 650689

b2 c9

cb

74

d7

68

6d

OUT 6

Figure 5.2. LUT circuit representation, with 34 LUTs, of the Boolean func-
tion for output bit 6 of the SoDark S-box. The number in each box is the
hexadecimal representation of the LUT truth table.

74

CHAPTER 6:
SAT-Based Attacks

The SAT problem is a fundamental problem of computer science. The description of the
problem is simple: Given a Boolean formula, is there an assignment to its variables for
which the formula evaluates to true? If such an assignment exists, the formula is said to be
satisfiable. SAT problems are normally stated in CNF form. If the problem can be stated in
a form where none of the minterms in its CNF expression contains more than two variables,
it is said to be a 2-CNF SAT problem. Solutions for 2-CNF SAT problems can be found in
polynomial time.

The definition of the 3-CNF SAT problem is analogous to the 2-CNF SAT definition and
it has been proven that all SAT problems of higher order are reducible to an equivalent
3-CNF SAT problem. Furthermore, the 3-CNF SAT problem is proven NP-complete and is
among the most studied NP problems [44]. The worst-case performance of the 3-CNF SAT
is the same as for other MQ problems: O(2αn), 0 < α ≤ 1. With modern SAT-solvers,
α ≥ 0.386 for satisfiable 3-CNF SAT problems. Problems encountered in practice can
often be solved even faster than this [15].

SAT solvers are computer programs specifically developed for solving SAT problems.
Modern SAT solvers can solve hard problems involving thousands of variables occurring
in a wide range of applications. In contrast, naïve brute force methods can handle only a
few tens of variables. The construction of SAT solving algorithms is still an active research
problem in academia and many different heuristics are used. For that reason, this research’s
focus has been on creating efficient CNF representations while treating the SAT solvers as
black boxes.

The problem of recovering the key from a cipher can be converted into a SAT problem
by expressing the entire cipher in CNF. The logic circuit representations of the SoDark
S-box created in Chapter 5 can be converted into CNF by using the Tseytin transform [45]
whereby the gates in the circuit are converted to equivalent CNF representations. Table 6.1
shows CNF representations of the gates used in Chapter 5.

75

Table 6.1. Tseytin transformations for some logic gates. Adapted from [45].
Logic gate Operation Conjunctive normal form
NOT C = A (A ∨ C) ∧ (A ∨ C)
AND C = A · B (A ∨ B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)
OR C = A + B (A ∨ B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)
XOR C = A ⊕ B (A ∨ B ∨ C) ∧ (A ∨ B ∨ C) ∧ (A ∨ B ∨ C) ∧ (A ∨ B ∨ C)
ANDNOT C = A · B (A ∨ B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)

A C program that constructs a problem for input to a SAT solver was created [38]. It
takes three plaintext–ciphertext–tweak tuples as input and converts them to their respective
implied CNF representations in the DIMACS format commonly used by SAT solvers.
Except for the S-boxes, the cipher consists entirely of XOR operations. This makes the
conversion process fairly simple. It consists of converting Equations 3.1, 3.2, and 3.3 for
each round into CNF using the logic circuit representation from Chapter 5 and the Tseytin
transformations of the operations from Table 6.1. The 56 variables representing the key bits
are shared among the parallel cipher representations. The 64 tweak bits can be completely
removed from the CNF representation by observing that the XOR addition of a known bit
is equivalent to the NOT operation if the bit is one and to doing nothing if the bit is zero.

If the plaintext–ciphertext–tweak tuples are correct, the constructed SAT problem will be
satisfiable. Due to the small block size, three tuples are needed to imply a single key in the
case of SoDark-3.

Table 6.2 shows statistics of the CNF representations for various numbers of rounds. The
representations of the test vectors from [5] were tested with three different SAT solvers:
CryptoMiniSat [28], Plingeling, and Treengeling [29]. All three are state-of-the-
art parallel solvers that have performed well in the International SAT Competitions [46].
Plingeling and Treengeling are part of the Lingeling family of SAT solvers, while
CryptoMiniSat is a fork of MiniSat [47] optimized for solving cryptological problems.

76

Table 6.2. CNF representation statistics.
Rounds Clauses Variables

2 3864 12438
3 7479 24252
4 11094 36066
5 14709 47880

Plingeling and Treengeling were successful in solving the SAT problems and recovering
the key for up to four rounds while CryptoMiniSat only managed to solve the two- and
three-roundSATproblems. For five-round problems, none of the solvers could find solutions
even after more than two weeks of search. Solution times for each of the solvers are plotted
in Figure 6.1.

77

0.1

1

10

100

1000

2 3 4

Ti
m
e
[s
]

Rounds

Plingeling
Treengeling

CryptoMiniSat

Figure 6.1. Performance of SAT solver attacks.

78

CHAPTER 7:
Brute Force Attacks

7.1 Introduction
As said in Chapter 2, all ciphers can be broken by brute force. For that reason, the size
of the key space must be large enough to prevent exhaustive key search. With their small
key lengths of 56 bits, all SoDark variants can be assumed to be vulnerable to brute force
attacks in practice, see Table 2.3. For that reason, and to measure the actual upper bound
of security for the algorithm, a brute force attack was mounted.

An efficient brute force attack necessitates a fast implementation of the cipher. Section 2.4.1
discusses some different approaches to fast exhaustive key search. From the investigations
so far, nothing has been uncovered that would prevent ASIC attacks from being successful
with speeds in the same order as the EFF’s ASIC-based computer on DES. Time and
resource limitations prohibit such an attempt in this case and restrict attempts to commonly
available computer hardware.

7.2 The CUDA Framework
The Nvidia CUDA parallel computing framework was chosen for the brute force imple-
mentation. It is a GPGPU framework primarily designed for use with Nvidia’s various
GPU products and provides a C-like programming language for writing programs that run
on them. A feature of recent generations of Nvidia GPUs that make them particularly
suitable for brute force key search is the lop3.b32 PTX instruction. PTX is the interme-
diate assembly-like language used by the CUDA framework and its lop3.b32 instruction
performs a bitwise 3-bit table lookup [48]. This single-instruction bitwise lookup enables
the creation of bitslicing implementations that are faster compared to implementations that
use only standard bitwise logic instructions.

The execution of GPGPU programs differs significantly from the execution of programs
on normal CPUs. GPUs can have thousands of cores and are therefore able to execute
thousands of concurrent threads. Unlike CPU cores, the GPU cores execute in lockstep.

79

While this is one of the reasons behind the speeds provided by GPGPU computing, it also
causes severe performance penalties for branching instructions. Fast GPGPU programs
therefore limit, or preferably eliminate, branch instructions. Performing operations on the
processor and GPU in parallel with copying data between computer and GPU memory also
improves performance by reducing latency [49].

7.3 Brute Force Bitslicing Implementation
A CUDA bitslicing implementation of SoDark was developed for this thesis [38] using all
methods described in the previous section to achieve close to optimal performance. It takes
two or three plaintext–ciphertext–tweak tuples as input and outputs all matching keys. It
supports using several CUDA devices and launches three parallel CPU threads per GPU
device in order to minimize latency.

The key space is divided into 224 subsets of 232 keys each. All keys in each set of 232 keys
share the same three most significant key bytes. This means that the first round, which
uses only those key bytes, can be calculated once for all keys in the set. In the case of the
Lattice eight-round version, the same applies to the last round, see Table 3.2. This reduces
the number of rounds that the bitslicing part of the implementation has to perform from
eight to six. Importantly, only five rounds of S-box operations have to be performed.

With the guessed states after the first and before the last round having been computed on the
CPU, the rest of the key bytes are tested on the GPU using a carefully optimized branch-free
bitslicing CUDA implementation of rounds two through six. Since the platform register
size is 32 bits, each kernel iteration tests 32 keys in parallel. Instead of executing branch
instructions on the GPU to test for expected output, the comparison is done using bitwise
logic instructions and the result copied to GPU memory. After each kernel is finished
executing for a certain subset of 232 keys, the results are copied from GPU to computer
memory while another kernel executes for the next subset of keys.

After copying the results to main memory, the CPU checks for keys that matched the first
plaintext–ciphertext–tweak tuple. Matches are verified against the second and third tuples
using a CPU SoDark implementation. Keys that satisfy all three tuples are output as
candidates.

80

7.4 Attack in Practice
An exhaustive key search for all possible keys satisfying the first two plaintext–ciphertext–
tweak tuples from the test vectors in [5] was performed using the implementation described
in the previous section. The computer used had three Nvidia GeForce GTX 1070 GPUs.
The entire key space took 14 days to search through. All keys matching the two tuples
are presented in Table 7.1. This effectively proves that an exhaustive key search has been
successfully performed.

7.5 Ciphertext-Only Attack
The known-plaintext brute force attacks on the 2G and 3G ALE linking protection ciphers
can be extended to ciphertext-only attacks. This is made possible by the stereotypical nature
of ALE linking operations and PDU format. In many cases, parts of the plaintexts can be
accurately guessed only by observing encrypted message traffic. For a normal 2G ALE link
establishment call as described in Section 2.3, the three bit preamble of each plaintext will
be known. Additionally, it is known that the addresses in the first two PDUswill be identical.
In total, this equals about 30 bits of known information that can be used in a brute force
attack. More collected ciphertext–tweak pairs will be needed than for the corresponding
known-plaintext attack, in order to reduce the set of candidate keys to a manageable number.

Ciphertext-only attacks become easier with 3G ALE PDUs. This is due to the fact that
only 24 bits of the 26-bit PDUs are encrypted. The two unencrypted bits, together with
observations on the encrypted traffic, give information about the structure of the plaintext
allowing bits to be guessed. Furthermore, the inclusion of a CRC value in the plaintext
allows for easy validity checking of plaintexts during the attack.

81

Table 7.1. All 218 keys that satisfy the first two Lattice test
vectors ([54E0CD, C0D705, 543BD88000017550] and [54E0CD, 708434,
543BD88040017550]), obtained through exhaustive search.

00b07038aec462 3069d03b5e6bd1 636ba0f5daa068 95d6bf32317e41 ceac62ee56d694
0140e8f5915b5e 309e68761e9dd7 63775f3100a06b 97ac52e6bfa80d cf013ed902f61f
015975ce6b7331 328e55ef58b38f 639575c7a443b7 97c24df174a0ae d28b7ee995bc99
01fec4c977db1a 330a6144e0f90a 6509bbd7024c00 9821193e93d9a6 d46cd2d8f55eed
054e2802f89744 34e7ee30476031 66eb40e2733b91 985ed4ca1472dc d513cc98aa5302
057ce95bbf0ba0 36ed58e321f6f5 674124a9bbc4ad 987e053a3b0878 d6a1f169f258a2
0673dcd87f4713 37e02d9cdb17c4 679f47c6d17629 9a5fea12c494ce d6a54180d05bf9
06f74260f1fb20 381cff4ee924a9 6970f4b6091186 9af042a22bcc6d d6db6c4f39c164
0736fc708afcfb 3bf99f5df6d293 6b5c659d868047 9cd6cb701c6e5d d6ff7b2ecac95e
093f191fd0c370 3c97254421af02 6b751774cdcae0 9dee63f1597bc0 d7b5481ec6da24
09b97c5da4480e 3cd3f0019caa90 6d37f4f1cccb67 9e09ec9644f69f d7fc96b6f571c5
0a150dcde7a946 41d252725166d7 6d5fd40e35fa7b 9e327157d939c4 d8ce546516e0ac
0b21be27bb3af5 4260a04cf6cd2e 6ea860546f6ab3 9f202c12809cc5 d9e49aa6dfce69
0b34fbf6ae7656 42d7abbb7dc6c3 6ff389ec21f5a9 9fdd172904cb6b daabe8dffe568b
0baa2008befd33 43130e6780ebdf 7080882885bbe1 a256caef0a97a9 dbf0e44ac9666a
0d3b69201c3a6a 43231efabca62b 7112618dc6db8a a38b32d6025dab dc474d99989616
0d8d8a7caaf04d 43fdf165c2ba8a 71c8bb8ffc20d2 a50411d787d7d2 dd21ff4906eff0
0df3956499fd9d 44463166ed6f0d 724c0d46b55d70 a563907ef6b053 e1edb57d6bb1ce
0f1ec077dd9bd6 44cbf7563ea50f 7310a1f76669c8 a6b4fe3d432e61 e22d507a6da9e3
0f83ac243b6f48 44cdc9cd84837b 73df341b32f237 a903a2be1e5ff3 e23a9e59b81e17
0f84c9ecce9b52 457bd494d7f982 73efe6c86b7bdf aaad65d424e4b7 e28e10822e4d7a
11d421ea82165d 4763aca9ef0eaa 73fdcb5a227163 ae11a11cd353d7 e59eba9300481f
12e272992b13ef 49eb4a3a0d8efe 77455402f69746 ae1391092ec654 e68e20381d0286
1480b2fd91ab16 4a4e1a99da0bb6 79015483cfe3f3 ae5b64ae8f9272 e7204957893dc7
14935eba42dd80 4d31490675fa0d 7b55c8bfd6b858 b00bc84f7637a3 e856d002e1b97c
160fc808e98a89 4e42de4df4e043 7bfe33a5ba521e b0be6612d34c44 e946715362f1d7
172bf130e2b1aa 4f2f82502c6ef2 7d3599e156f52d b10f1184b0ba4a eaa2198c885feb
18e2d0ce88e921 5069e3bab80432 7e4dc45bccf57d b11b1afa058f2c eab311d7b5613c
1a2eac9a1915f7 51a82254021c3f 7e55559c8ba98f b3d46d242c10fb ee08b15b35e8cb
1a734efc2cd7c4 52eafaf530e9b0 7ed4507fd839c8 b6ab25108eec73 f0bc6d18038540
1c80b0e0468236 53e62ea0282fe9 82413525e542f4 bc5fb2c66ee64f f15bfd12e901b5
1cc269c99f364a 545d15797d2949 853d879087ff0b bc61e02a245b12 f488ff76fd81cd
1eac88355d276c 55f76c00a23f7d 8566527368ebc7 bc7d8d40512387 f51665c1eacc5e
1f5b56daf7c390 56f1093816d005 86be2141366558 bdedf33da8cce7 f6c5ac930a1bad
1fe48727721d6e 5773398aaf380a 876dcbf8367082 c2284a1ce7be2f f7aef7f9d5e1e2
21aff020b0970e 590731e28cd161 894b2ec0f7c881 c24f3751b51f64 f971ffa5233a36
22319c966def7b 5b394bd050a895 8d060177eaa07d c32497bb9f05b4 f9a612a8d08ba9
26375adab9bb06 5c21f59d23ec58 8e3ab8da6862ee c4e94b7424f87f fa28f3c61cb0a9
297e454a67b337 5c54214862f1b8 8f880c8719801f c5e056176b8aca fad11e12df9039
2aaa8e2b763284 5c984850af5937 9025f47efb9ee7 c7516de248ebaa fbdcc02bed9524
2d25a5e0825a0a 5d9776266777d1 903803b6025871 c77d5e39c9fe01 fc1c6588c7fee1
2dde587cf0e579 5ff16d38bdc8fb 907037037094e6 c92384b5a33d51 fc3a839ddce9a6
2ea922659549b7 615983d3fa3dc0 9251cab8ab5ba3 caaf532c9028ac
2fa253646985ae 619f526eeb6b5d 93eea84cd8aaf2 cdf7527ced93c9

82

CHAPTER 8:
Conclusion

8.1 Summary of Attacks
Table 8.1 summarizes the attacks on SoDark-3 presented in this thesis. For five rounds
and fewer, key recovery attacks are possible, given two arbitrary plaintext–ciphertext–tweak
tuples. The attacks have time complexities that are significantly lower than for exhaustive
key search. Additionally, key recovery using SAT solvers is possible for four and fewer
rounds.

Table 8.1. Summary of attacks on SoDark-3. Time complexities are
weighted to be proportional to the brute force complexity of 255 for the
same number of rounds (see Section 4.1).
Section Type Rounds Time Data Memory
4.3 Known-plaintext structural 2 29 2 24.1

4.4 Known-plaintext structural 3 216 2 –
4.5 Known-plaintext structural 4 232.9 2 217.6

4.6 Known-plaintext structural 5 249 2 28

4.7 Chosen-tweak structural 6 246.1 212.7 –
4.7 Chosen-tweak structural 7 246.1 212.7 –
4.8 Chosen-tweak structural 8 245.1 212.7 –
6 Known-plaintext SAT-based ≤ 4 Low 3 Low
7.4 Known-plaintext brute force ? 255 2 –
7.5 Ciphertext-only brute force ? 255 > 2 –

Attacks on six, seven, and eight rounds also exist with low time complexities. Their data
complexities are manageable, but the requirements on relationships between tweaks make
the attack hard to implement by a passive attacker. Referring back to Section 4.7, the
attack requires all bytes in the tweaks in a pair of plaintext–ciphertext–tweak tuples to be
identical, except for the fifth tweak byte. Considering the description of the ALE protocol
in Section 2.3, this may indeed be possible to arrange for an attacker that, for example, has
come in possession of a keyed ALE radio.

83

It should be noted that, if tweaks are generated in accordance with the specifications in [4],
the fifth byte contains the word number, see Table 2.2. It will be the only byte that changes
between PDUs in a single linking transmission. There is therefore a small chance that the
output differentials required for the six-, seven-, and eight-round attacks will occur during
normal operation. For ALE networks that use AL-1, this probability will be higher than for
networks using AL-2, due to the longer PI.

In a normal three-PDU linking transmission, the PDUs form three different plaintext–
ciphertext–tweak tuple-pairs, all with the required input differential. From Equation 4.80,
the required number of intercepted linking transmissions required to find the correct output
differential with 50% probability is therefore

11,629,080
3

= 3,876,360. (8.1)

To put the number in perspective, it is equivalent to intercepting a linking transmission every
eight seconds for a year. This is obviously not a realistic setting, except for possibly in some
very high intensity military operations. It should be considered, however, that given the high
proliferation of ALE technology and considering all messages by all users worldwide, there
is certainly a non-negligible probability of the output differential appearing somewhere
within some sufficiently large time interval.

The demonstrated feasibility of brute force attacks on the SoDark ciphers, regardless of the
number of rounds, shows that the level of protection provided by ALE linking protection
is not sufficient. This is in agreement with the key length recommendations presented in
Chapter 2.

8.2 Discussion
“Anyone, from the most clueless amateur to the best cryptographer, can create
an algorithm that he himself can’t break. It’s not even hard. What is hard is
creating an algorithm that no one else can break, even after years of analysis.”

—Bruce Schneier [50]

84

A fundamental maxim in cryptography is that one should not use proprietary or “home-
made” cipher algorithms in any setting that requires real security. The pitfalls in cipher
construction are many and even world-leading experts have failed in such efforts. The
accepted best practice is to use well-known algorithms that have been developed and vetted
thoroughly [51]. AES is probably the best known example of a cipher that satisfies these
requirements. For that reason, it should come as no surprise that it is the world’s most used
cipher algorithm.

With this in mind, the decision by the creators of the ALE standards to design their own
cipher algorithm is unfortunate. At the time 2G ALE was standardized, DES—though also
a 56-bit cipher—was well known and used. Together with a suitable block cipher mode of
operation, it would have been a good candidate in lieu of Lattice/SoDark. In any case,
with developments during the 1990s in both cryptanalysis and demonstrated exhaustive key
searches performed by, among others, the EFF and Distributed.net, a replacement of the
56-bit linking protection algorithm should have been considered at the time.

The use of a tweak in SoDark to thwart replay attacks, which was novel for the time, should
be noted. Not only does it fulfill the requirements of channel- and time-variation well,
it also effectively prevents the construction of TMTO attacks to which other ciphers with
weak structure and short key lengths are susceptible. While many design decisions made
in the construction of the ALE linking protection ciphers can be criticized, the design and
inclusion of a tweak is certainly not one of those.

The weaknesses presented in the SoDark cipher family and their impact on the ALE system
as a whole is a good example of how design flaws in subsystems affect the design goals
of the larger system. In this case, the design goals regarding confidentiality, integrity,
and availability in the ALE system hinge completely on the cryptographic strength of the
SoDark algorithm.

An attacker with knowledge of an ALE linking protection key can attack an ALE HF
radio system in a number of ways: First, the attacker can compromise confidentiality by
recovering encrypted plaintexts. This will include identities of senders and receivers as well
as any orderwire traffic transmitted using the ALE protocol.

85

Second, the adversary can compromise the integrity of the network by injecting arbitrary
ALE PDUs. This can be leveraged to establish links and inject higher level protocol traffic.
The ability to inject PDUs can also be used to geographically locate other stations, by
causing them to automatically transmit responses to received linking requests.

Third, availability attacks are possible through PDU injection. For example, by saturating
an ALE network with link establishment calls, an adversary can tie up all radio stations in
the network with fake traffic, preventing the transmission of real traffic.

The synchronous nature of 3G ALE makes it vulnerable to more attacks by an adversary
with knowledge of the linking protection key. For example, by transmitting faked replies
to time synchronization requests, the adversary can force radios out of the network by
providing deliberately inaccurate time synchronization responses.

It is also worth emphasizing that ALE linking protection, whether the cipher is secure or not,
only protects the linking process itself. After the link has been established, it is handed off
for use by higher level protocols. If those protocols do not include protection mechanisms
of their own, attacks on established links are possible without knowledge of the linking
protection key through the use of normal electronic warfare traffic injection methods.

8.3 Recommendations
The ciphers in the SoDark family should not be used.

For short-term mitigation, ALE linking protection users should change keys at least on a
daily basis, regardless of their threat model. If the threat model includes adversaries that
have access to the resources of medium or large organizations, keys should be assumed to
be recovered within, at most, hours from interception of traffic. Appropriate changes in
operating procedures should be made to ensure protection of confidentiality, integrity, and
availability in the system.

For long-term mitigation, the solution is to implement secure replacements for the SoDark
ciphers. Users that have access to AL-3 and AL-4 linking protection ciphers can use those.
For users that do not, a suggested replacement for SoDark is outlined in the next section.

86

8.4 A Suggested Replacement for SoDark
According to [52], the ALE designers are aware of the questionable security of the SoDark
family. For that reason, they are considering a replacement cipher for fourth-generation (4G)
ALE. Unfortunately, a purpose-made cipher, Halfloop, is once again a candidate, both to
replace 24- and 48-bit SoDark in 4G ALE as well as in a 96-bit version for encryption of
the 96-bit PDUs introduced in that standard.

A better option would be to use encryption based on best practice methods to replace
SoDark in 2G and 3G ALE and for linking protection in 4G ALE.

AES is by far the most used and most trusted cipher algorithm today. It was created and
standardized through an open and rigorous process. Additionally, it is the first, and so
far only, publicly developed cipher approved by the NSA for protection of U.S. classified
information.

With a block size of 128 bits, AES cannot be applied as a drop in replacement. However,
using block ciphers directly is unusual in applications. This is the purpose of block cipher
modes of operation. A mode of operation that preserves the format of the encrypted PDUs
as well as satisfies the other requirements on linking protection is the Thorp shuffle [53]. It
stands on a sound mathematical foundation and is backed by solid reasoning concerning its
security. It is well suited for format preserving encryption of the small blocks used in the
ALE standards.

The Thorp shuffle is a maximally unbalanced Feistel network that encrypts a single bit per
round, so the number of rounds is equal to the block size. Figure 8.1 illustrates one round of
the Thorp shuffle. Here, AES is suggested as a round function. The authors of [53] present
a method to avoid calling the round function in every round that they dub the 5x trick. Using
this method, the function only needs to be called

⌈24
5
⌉
= 5 times in the 24-bit case,

⌈48
5
⌉
= 10

times in the 48-bit case, and
⌈96

5
⌉
= 20 times in the 96-bit case. The number of passes of

the Thorp shuffle required for proper security is investigated in [53].

Since n − 1 bits of input to the AES round function are used, where n is the block size, the
remaining 129 − n bits can be used to input a tweak. In the case of n = 96, only 33 bits are
available for tweak use. A solution to this could be to use an additional AES encryption

87

b x

AES K

⊕

x d

Figure 8.1. One round of the Thorp shuffle with AES as the Feistel round
function. One bit, b is encrypted into a bit d and concatenated with the
unaffected bits x. Adapted from [53].

operation to compress the 64-bit tweak and add the result to the input in some suitable
manner.

One of the reasons the Rijndael algorithm was selected for the AES standard over the
other candidates was its speed on a variety of platforms, including on small 8-bit embedded
systems [16]. This, together with the low number of PDUs encrypted in any linking
operation, should make the speed of the proposed solution acceptable, even on embedded
hardware in field radios.

8.5 Ideas for Further Research
Many lines of effort were abandoned due to time constraints. They may provide further
insight into the security of the SoDark family of ciphers.

Structural attacks, like the ones described in Chapter 4 may be possible for more than eight
rounds. The filtering technique described in Sections 4.7 and 4.8 that enables identifying
specific differentials many rounds into the cipher with high probability works on any number
of rounds.

No structural attacks were attempted on SoDark-6. The methods developed for SoDark-3
are likely applicable and may yield similar results.

88

Approaches to algebraic cryptanalysis other than the one used in Chapter 6 may prove
fruitful. For example, SAT solvers based on belief propagation tend to be very fast in
solving known satisfiable SAT problems. In some cases they are able to solve very large
problems where other SAT solvers fail [44].

The algorithms used to create the logic circuit representations were designed for creating
circuits that are efficient to implement on modern CPUs. Modification of the algorithms
so that they can find networks with all 14 non-trivial Boolean functions of two variables
would likely result in smaller circuits that are easier for SAT solvers to handle.

An extension of the brute force solver developed in Chapter 7 to handle the ciphertext-only
attacks described in Section 7.5 would provide an upper bound on the security of the cipher
in best-case conditions.

89

THIS PAGE INTENTIONALLY LEFT BLANK

90

List of References

[1] E. E. Johnson, E. Koski, W. N. Furman, M. Jorgenson, and J. Nieto, Third-
generation and Wideband HF Radio Communications. Norwood, MA: Artech
House, 2012.

[2] List of automatic link establishment agencies and frequencies. (2017). [Online].
Available: http://www.ominous-valve.com/ale-list.txt.

[3] B. Schneier, “A self-study course in block-cipher cryptanalysis,” Cryptologia,
vol. 24, no. 1, pp. 18–33, 2000, doi:10.1080/0161-110091888754.

[4] Interoperability and Performance Standards for Medium and High Frequency Radio
Systems, United States Department of Defense Std. MIL-STD-188-141C, 2011.

[5] E. E. Johnson, “A 24-bit encryption algorithm for linking protection,” USAISEC,
Tech. Rep. ASQB-OSO-S-TR-92-04, Mar. 1992.

[6] D. Gollman, Computer Security, 2nd ed. West Sussex, UK: John Wiley & Sons Ltd.,
2006.

[7] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of Applied Cryp-
tography. New York, NY: CRC Press, 1996.

[8] A. Kerckhoffs, “La cryptographie militaire [military cryptography],” Journal des
sciences militaires [Journal of Military Sciences], pp. 5–83, 1883.

[9] C. E. Shannon, “Communication theory of secrecy systems,”
Bell System Technical Journal, vol. 28, no. 4, pp. 656–715, 1949,
doi:10.1002/j.1538-7305.1949.tb00928.x.

[10] R. Schroeppel and H. Orman. (1998, July). An Overview of the Hasty Pudding Ci-
pher. [Online]. Available: http://richard.schroeppel.name:8015/hpc/hpc-overview.

[11] M. Liskov, R. L. Rivest, and D. Wagner, “Tweakable block ciphers,” in 22nd An-
nual International Cryptology Conference, Santa Barbara, CA, 2002, pp. 31–46,
doi:10.1007/3-540-45708-9_3.

[12] Institute for Telecommunication Sciences. Voice of America Coverage Analysis Pro-
gram (VOACAP). [Online]. Available: https://www.its.bldrdoc.gov/resources/radio-
propagation-software/high-frequency/high-frequency-propagation-models.aspx.

[13] Telecommunications: HF Radio Automatic Link Establishment, National Communi-
cations System – Office of Technology and Standards Std. FS-1045A, 1993.

91

http://www.ominous-valve.com/ale-list.txt
https://doi.org/10.1080/0161-110091888754
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://richard.schroeppel.name:8015/hpc/hpc-overview
https://doi.org/10.1007/3-540-45708-9_3
https://www.its.bldrdoc.gov/resources/radio-propagation-software/high-frequency/high-frequency-propagation-models.aspx
https://www.its.bldrdoc.gov/resources/radio-propagation-software/high-frequency/high-frequency-propagation-models.aspx

[14] A. Bogdanov, D. Khovratovich, and C. Rechberger, “Biclique cryptanalysis of
the full AES,” in 17th International Conference on the Theory and Application
of Cryptology and Information Security, Seoul, South Korea, 2011, pp. 344–371,
doi:10.1007/978-3-642-25385-0_19.

[15] G. Bard, Algebraic Cryptanalysis. Dordrecht, Netherlands: Springer Science &
Business Media, 2009, doi:10.1007/978-0-387-88757-9.

[16] L. R. Knudsen and M. Robshaw, The Block Cipher Companion. Heidelberg, Ger-
many: Springer Science & Business Media, 2011, doi:10.1007/978-3-642-17342-4.

[17] N. Smart et al., “ECRYPT II yearly report on algorithms and keysizes (2011–2012),”
Katholieke Universiteit Leuven, Tech. Rep. D.SPA.20, Sep. 2012.

[18] The Electronic Frontier Foundation, Cracking DES: Secrets of Encryption Research,
Wiretap Politics & Chip Design, 1st ed. Sebastopol, CA: O’Reilly & Associates Inc.,
1998.

[19] E. Biham, “A fast new DES implementation in software,” in 4th International
Workshop on Fast Software Encryption, Haifa, Israel, 1997, pp. 260–272,
doi:10.1007/BFb0052352.

[20] M. Hellman, “A cryptanalytic time-memory trade-off,” IEEE Transac-
tions on Information Theory, vol. 26, no. 4, pp. 401–406, July 1980,
doi:10.1109/TIT.1980.1056220.

[21] A. Biryukov, A. Shamir, and D. Wagner, “Real time cryptanalysis of A5/1 on a PC,”
in 7th International Workshop on Fast Software Encryption, New York, NY, 2000,
pp. 1–18, doi:10.1007/3-540-44706-7_1.

[22] W. Diffie and M. E. Hellman, “Special feature exhaustive cryptanalysis of the
NBS data encryption standard,” Computer, vol. 10, no. 6, pp. 74–84, 1977,
doi:10.1109/C-M.1977.217750.

[23] E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,”
in Conference on the Theory and Application of Cryptography, Santa Barbara, CA,
1990, pp. 2–21, doi:10.1007/3-540-38424-3_1.

[24] M. Matsui, “Linear cryptanalysis method for DES cipher,” inWorkshop on the The-
ory and Application of Cryptographic Techniques, Lofthus, Norway, 1993, pp. 386–
397, doi:10.1007/3-540-48285-7_33.

[25] H. M. Heys, “A tutorial on linear and differential cryptanalysis,” Cryptologia,
vol. 26, no. 3, pp. 189–221, 2002, doi:10.1080/0161-110291890885.

92

https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-0-387-88757-9
https://doi.org/10.1007/978-3-642-17342-4
https://doi.org/10.1007/BFb0052352
https://doi.org/10.1109/TIT.1980.1056220
https://doi.org/10.1007/3-540-44706-7_1
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1080/0161-110291890885

[26] A. Biryukov and L. Perrin, “On reverse-engineering S-boxes with hidden design
criteria or structure,” in Conference on the Theory and Application of Cryptography,
Santa Barbara, CA, 2015, pp. 116–140, doi:10.1007/978-3-662-47989-6_6.

[27] L. Perrin and A. Udovenko, “Algebraic insights into the secret Feistel network,” in
23rd International Conference on Fast Software Encryption, Bochum, Germany,
2016, pp. 378–398, doi:10.1007/978-3-662-52993-5_19.

[28] M. Soos, “The CryptoMiniSat 5 set of solvers at SAT Competition 2016,” in SAT
Competition 2016, Bordeaux, France, 2016, p. 28, doi:10138/164630.

[29] A. Biere, “Splatz, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT
Competition 2016,” in SAT Competition 2016, Bordeaux, France, 2016, pp. 44–45,
doi:10138/164630.

[30] S. Even and Y. Mansour, “A construction of a cipher from a single pseudorandom
permutation,” in International Conference on the Theory and Application of Cryp-
tology, Fujiyoshida, Japan, 1991, pp. 210–224, doi:10.1007/3-540-57332-1_17.

[31] J. Daemen, “Limitations of the Even–Mansour construction,” in International Con-
ference on the Theory and Application of Cryptology, Fujiyoshida, Japan, 1991, pp.
495–498, doi:10.1007/3-540-57332-1_46.

[32] O. Dunkelman, N. Keller, and A. Shamir, “Minimalism in cryptography: The Even-
Mansour scheme revisited.” in 31st Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cambridge, UK, 2012, pp. 336–354,
doi:10.1007/978-3-642-29011-4_21.

[33] I. Dinur, O. Dunkelman, N. Keller, and A. Shamir, “Key recovery attacks on 3-round
Even–Mansour, 8-step LED-128, and full AES2,” in 19th International Conference
on the Theory and Application of Cryptology and Information Security, Bengaluru,
India, 2013, pp. 337–356, doi:10.1007/978-3-642-42033-7_18.

[34] I. Dinur, O. Dunkelman, N. Keller, and A. Shamir, “Cryptanalysis of iterated Even–
Mansour schemes with two keys,” in 20th International Conference on the The-
ory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., 2014, pp. 439–457, doi:10.1007/978-3-662-45611-8_23.

[35] I. Dinur, O. Dunkelman, N. Keller, and A. Shamir, “Key recovery attacks on iterated
Even–Mansour encryption schemes,” Journal of Cryptology, vol. 29, no. 4, pp. 697–
728, 2016, doi:10.1007/s00145-015-9207-3.

93

https://doi.org/10.1007/978-3-662-47989-6_6
https://doi.org/10.1007/978-3-662-52993-5_19
https://doi.org/10138/164630
https://doi.org/10138/164630
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/3-540-57332-1_46
https://doi.org/10.1007/978-3-642-29011-4_21
https://doi.org/10.1007/978-3-642-42033-7_18
https://doi.org/10.1007/978-3-662-45611-8_23
https://doi.org/10.1007/s00145-015-9207-3

[36] A. Bogdanov, L. R. Knudsen, G. Leander, F.-X. Standaert, J. P. Steinberger, and
E. Tischhauser, “Key-alternating ciphers in a provable setting: Encryption using a
small number of public permutations,” in 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cambridge, UK, 2012,
pp. 45–62, doi:10.1007/978-3-642-29011-4_5.

[37] A. Bogdanov and C. Rechberger, “A 3-subset meet-in-the-middle attack: Cryptanal-
ysis of the lightweight block cipher KTANTAN,” in 17th International Workshop
on Selected Areas in Cryptography, Waterloo, Ontario, Canada, 2010, pp. 229–240,
doi:10.1007/978-3-642-19574-7_16.

[38] M. Dansarie. (2017, Sep.). SoCracked. [Online]. Available:
https://github.com/dansarie/SoCracked. doi:10.5281/zenodo.893134.

[39] M. Kwan. (2000, Oct.). Reducing the gate count of bitslice DES. Cryptology ePrint
Archive, Report 2000/051. [Online]. Available: https://eprint.iacr.org/2000/051.

[40] DeepLearningJohnDoe. (2015). SBOXDiscovery. [Online]. Available:
https://github.com/DeepLearningJohnDoe/SBOXDiscovery.

[41] K. H. Rosen, Discrete Mathematics and Its Applications, 7th ed. New York, NY:
McGraw-Hill, 2012.

[42] M. Dansarie. (2017, Sep.). sboxgates. [Online]. Available:
https://github.com/dansarie/sboxgates. doi:10.5281/zenodo.891021.

[43] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull, “Graphviz—
open source graph drawing tools,” in 9th International Symposium on Graph Draw-
ing, Vienna, Austria, 2001, pp. 483–484, doi:10.1007/3-540-45848-4_57.

[44] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiabil-
ity. Boston, MA: Pearson Education Inc., 2015.

[45] Wikipedia. (2017). Tseytin transformation. [Online]. Available:
https://en.wikipedia.org/wiki/Tseytin_transformation.

[46] SAT Competitions. The international SAT Competitions web page. [Online]. Avail-
able: http://www.satcompetition.org/.

[47] N. Eén and N. Sörensson, “An extensible SAT-solver,” in 6th International Confer-
ence on Theory and Applications of Satisfiability Testing, Santa Margherita Ligure,
Italy, 2003, pp. 502–518, doi:10.1007/978-3-540-24605-3_37.

[48] Nvidia Corp. (2017, June). Parallel Thread Execution ISA. [Online]. Available:
https://docs.nvidia.com/cuda/pdf/ptx_isa_5.0.pdf.

94

https://doi.org/10.1007/978-3-642-29011-4_5
https://doi.org/10.1007/978-3-642-19574-7_16
https://github.com/dansarie/SoCracked
https://doi.org/10.5281/zenodo.893134
https://eprint.iacr.org/2000/051
https://github.com/DeepLearningJohnDoe/SBOXDiscovery
https://github.com/dansarie/sboxgates
https://doi.org/10.5281/zenodo.891021
https://doi.org/10.1007/3-540-45848-4_57
https://en.wikipedia.org/wiki/Tseytin_transformation
http://www.satcompetition.org/
https://doi.org/10.1007/978-3-540-24605-3_37
https://docs.nvidia.com/cuda/pdf/ptx_isa_5.0.pdf

[49] Nvidia Corp. (2017, June). CUDA C programming guide. [Online]. Available:
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

[50] B. Schneier, “A memo to the amateur cipher designer,” Crypto-Gram, no. 10, 1998,
https://www.schneier.com/crypto-gram/archives/1998/1015.html#cipherdesign.

[51] B. Schneier, Applied Cryptography, 2nd ed. New York, NY: John Wiley & Sons
Ltd., 1996.

[52] E. E. Johnson, “Wideband ALE – the next generation of HF,” in 2016 Nordic HF
Conference, HF 16, Fårö, Sweden, 2016.

[53] B. Morris, P. Rogaway, and T. Stegers, “How to encipher messages on a small do-
main,” in 29th Annual International Cryptology Conference, Santa Barbara, CA,
Aug. 2009, pp. 286–302, doi:10.1007/978-3-642-03356-8_17.

95

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www.schneier.com/crypto-gram/archives/1998/1015.html#cipherdesign
https://doi.org/10.1007/978-3-642-03356-8_17

THIS PAGE INTENTIONALLY LEFT BLANK

96

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

97

	Introduction
	Introduction
	Purpose and Motivation
	Methodology
	Thesis Outline

	Background
	Information Security
	Block Ciphers
	Automatic Link Establishment Systems
	Cryptanalysis

	The SoDark Family of Algorithms
	Background
	Notation
	24-bit Version (SoDark-3)
	48-bit Version (SoDark-6)
	S-box Properties and Probable Generation and Selection Criteria
	Equivalence to the Even–Mansour Construction
	Properties with Respect to Linear Cryptanalysis

	Structural Attacks
	Measures of Complexity
	Attacks on Iterated Even–Mansour Constructions
	Known-Plaintext Attack on Two-Round SoDark-3
	Known-Plaintext Attack on Three-Round SoDark-3
	Known-Plaintext Attack on Four-Round SoDark-3
	Known-Plaintext Attack on Five-Round SoDark-3
	Chosen-Tweak Attack on Six- and Seven-Round SoDark-3
	Chosen-Tweak Attack on Eight-Round SoDark-3
	Experimental Verification

	Logic Circuit Representations of the SoDark S-box
	Introduction
	Kwan's Algorithm
	Improvements to Kwan's Algorithm
	Software Implementation
	Generated Circuits

	SAT-Based Attacks
	Brute Force Attacks
	Introduction
	The CUDA Framework
	Brute Force Bitslicing Implementation
	Attack in Practice
	Ciphertext-Only Attack

	Conclusion
	Summary of Attacks
	Discussion
	Recommendations
	A Suggested Replacement for SoDark
	Ideas for Further Research

	List of References
	Initial Distribution List

